• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplikace experimentálních prostředí s vícečetnými referenčními rámci ve výzkumu chování živočichů / Applications of multiple reference frames environments in behavioral research

Telenský, Petr January 2011 (has links)
This work has been motivated by the desire to enhance our knowledge about specific cognitive requirements of navigation in multiple reference frames environments and to understand the roles of the hippocampus and posterior parietal cortex in this behavior. The main conclusions of this thesis are: (a) We have developed a novel behavioral test called the Enemy Avoidance Task. The initial set of experiments has shown that laboratory rats are able to plan their movement with respect to a to-be-avoided moving object. Behavioral performance in the task may be quantitatively evaluated. (b) The aforementioned ability is crucially dependent on the functional integrity of the dorsal hippocampus. To the contrary, functional inactivation of the dorsal hippocampi by local infusion of tetrodotoxin did not cause any impairment in the ability of the animal to estimate its distance from a non-moving object. The finding suggests a specific role of the hippocampus in dynamic cognitive processes required for flexible navigation strategies such as continuous updating of information about the position of a moving stimulus. These results are at odds with the two major theories of hippocampal function (Cognitive map theory and Declarative memory theory) and therefore suggest that revision of the theories is necessary. (c)...
2

Fast Mode Selection Algoritm for H.264 Video Coding

Hållmarker, Ola, Linderoth, Martin January 2005 (has links)
<p>ITU - T and the Moving Picture Expert Group (MPEG) have jointly, under the name of Joint Video Team (JVT), developed a new video coding standard. The standard is called H.264 and is also known as Advanced Video Coding (AVC) or MPEG-4 part 10. Comparisons shows that H.264 greatly outperforms MPEG-2, currently used in DVD and digital TV. H.264 halves the bit rate with equal image quality. The great rate - distortion performance means nevertheless a high computational complexity. Especially on the encoder side.</p><p>Handling of audio and video, e.g. compressing and filtering, is quite complex and requires high performance hardware and software. A video encoder consists of a number of modules that find the best coding parameters. For each macroblock several $modes$ are evaluated in order to achieve optimal coding. The reference implementation of H.264 uses a brute force search for this mode selection which is extremely computational constraining. In order to perform video encoding with satisfactory speed there is an obvious need for reducing the amount of modes that are evaluated.</p><p>This thesis proposes an algorithm which reduces the number of modes and reference frames that are evaluated. The algorithm can be regulated in order to fulfill the demand on quality versus speed. Six times faster encoding can be obtained without loosing perceptual image quality. By allowing some quality degradation the encoding becomes up to 20 times faster.</p>
3

Fast Mode Selection Algoritm for H.264 Video Coding

Hållmarker, Ola, Linderoth, Martin January 2005 (has links)
ITU - T and the Moving Picture Expert Group (MPEG) have jointly, under the name of Joint Video Team (JVT), developed a new video coding standard. The standard is called H.264 and is also known as Advanced Video Coding (AVC) or MPEG-4 part 10. Comparisons shows that H.264 greatly outperforms MPEG-2, currently used in DVD and digital TV. H.264 halves the bit rate with equal image quality. The great rate - distortion performance means nevertheless a high computational complexity. Especially on the encoder side. Handling of audio and video, e.g. compressing and filtering, is quite complex and requires high performance hardware and software. A video encoder consists of a number of modules that find the best coding parameters. For each macroblock several $modes$ are evaluated in order to achieve optimal coding. The reference implementation of H.264 uses a brute force search for this mode selection which is extremely computational constraining. In order to perform video encoding with satisfactory speed there is an obvious need for reducing the amount of modes that are evaluated. This thesis proposes an algorithm which reduces the number of modes and reference frames that are evaluated. The algorithm can be regulated in order to fulfill the demand on quality versus speed. Six times faster encoding can be obtained without loosing perceptual image quality. By allowing some quality degradation the encoding becomes up to 20 times faster.

Page generated in 0.0687 seconds