Spelling suggestions: "subject:"cultiple output"" "subject:"bmultiple output""
91 |
Interference Mitigation for OSFBC-OFDM Systems in Frequency Selective Fading ChannelWei, Shih-ping 04 August 2010 (has links)
Orthogonal frequency division multiplexing (OFDM) is the major technique
for next generation wireless communication system because of its high spectral
efficiency. In addition, multiple-input multiple-output (MIMO) technique is
usually used to further increase system capacity. There are two major coding
schemes adopted in MIMO-OFDM systems, i.e. space-time block code (STBC) and
space-frequency block code (SFBC). This thesis investigates the
orthogonal-space-frequency block code OFDM (OSFBC-OFDM) system.
In SFBC-OFDM systems, the channel frequency response is usually assumed
to be the same for adjacent subcarriers. However, this assumption is not valid in
frequency-selective fading environment. Therefore, the orthogonality of code
structure is destroyed, leading to substantial increase in interference and
significant decrease in system performance.
This thesis proposes a receiver equalizer which adopts an interference
cancellation (IC) mechanism to maximize the signal to interference plus noise ratio
(SINR). Both the Lagrange multiplier method and eigenvalue method are adopted
in the interference cancellation. Simulation experiments are conducted to verify
the system performance and results demonstrate that the SINR performance is
dramatically improved.
|
92 |
CP-Free Space-Time Block Coded MIMO-OFDM System Design Under IQ-Imbalance in Multipath ChannelHuang, Hsu-Chun 26 August 2010 (has links)
Orthogonal frequency division multiplexing (OFDM) systems with cyclic prefix (CP) can be used to protect signal from the time-variant multipath channel induced distortions. However, the presence of CP could greatly decrease the effective data rate, thus many recent research works have been focused on the multiple-input multiple-output (MIMO) OFDM systems without CP (CP-free), equipped with the space-time block codes (ST-BC). The constraint of the conventional MIMO-OFDM (without using the ST-BC) system is that the number of receive-antenna has to be greater than the transmit-antenna. In this thesis, we first consider the ST-BC MIMO-OFDM system and show that the above-mentioned constraint can be removed, such that the condition become that the receive antenna should be greater than one, that is the basic requirement for MIMO system. It is particular useful and confirm to the recently specification, e.g., 3GPP LTE (Long Term Evolution) where the system deploy the 2¡Ñ2 or 4¡Ñ4 antennas systems. This thesis also considers the effects of peak-to-average power ratio (PAPR) in the transmitter and In-phase/ Quadrature-phase (IQ) imbalance in the receiver, and solves them by using the adaptive Volterra predistorter and blind adaptive filtering approach of the nonlinear parameters estimation and compensation, along with the power measurement, respectively. After the compensator of IQ imbalance in the receiver, an equalizer under the framework of generalized sidelobe canceller (GSC) is derived for interference suppression. To further reduce the complexity of receiver implementation, the partially adaptive (PA) scheme is applied by exploiting the structural information of the signal and interference signature matrices. As demonstrated from computer simulation results, the performance of the proposed CP-free ST-BC MIMO-OFDM receiver is very similar to that obtained by the conventional CP-based ST-BC MIMO-OFDM system under either the predistortion or compensation scenario.
|
93 |
Tablet Computer Antenna Array for WWAN/LTE and LTE MIMO OperationsLyu, Chao-an 15 June 2011 (has links)
A tablet computer antenna array for WWAN/LTE and LTE MIMO operations is proposed. The antenna array comprises a main antenna and an auxiliary antenna. The main antenna is an eight-band coupled-fed antenna, which can cover the GSM850/900/1800/1900/UMTS and LTE700/2300/2700 operations. The auxiliary antenna is a three-band antenna, which can cover the LTE700/2300/2500 operation and occupies a small size. Acceptable isolation between the main and auxiliary antennas has also been obtained, which makes it promising for the main and auxiliary antennas to perform LTE MIMO operation in the LTE700/2300/2500 bands. Effects of the internal tablet computer antenna on the user¡¦s body are also studied. The obtained results show that the antenna can meet the 1-g body SAR specification of less than 1.6 W/kg by selecting a proper distance between the antenna and the flat phantom. Also, since the user¡¦s body is a lossy material, a decrease in the antenna¡¦s radiation efficiency is observed when the user¡¦s body is in the vicinity of the internal antenna.
|
94 |
LTE/WWAN and LTE MIMO Antennas for Ultrabook ComputersLiu, Ying-chieh 12 June 2012 (has links)
In this thesis, WWAN/LTE and LTE MIMO antennas for ultrabook computers are presented. The MIMO antenna system comprises an eight-band LTE/WWAN antenna and a three-band LTE antenna. The bandwidth of the eight-band LTE/WWAN antenna is enhanced by using an embedded parallel resonant circuit, which can result in dual-resonance excitation of the lowest resonant mode of the antenna. The bandwidth of the antenna¡¦s lower band can hence cover the LTE700/GSM850/900 operation. A design technique of improving the isolation of the MIMO antenna system is also presented. The isolation enhancement is obtained by embedding a 0.5-wavelength slot in the conductive supporting plate of the upper cover of the ultrabook computer. The embedded slot can attract the excited surface currents in the conductive supporting plate and decrease the coupling between the MIMO antennas through the coupling of the surface currents. The isolation between the MIMO antennas can hence be enhanced. Moreover, this technique will not lead to decreased radiation efficiency and impedance matching of the MIMO antennas, which is attractive for practical applications.
|
95 |
MIMO ANTENNA DESIGNS FOR WLAN APPLICATIONSChou, Jui-hung 22 May 2006 (has links)
In this thesis, the studies mainly focus on recent trends in novel MIMO antennas for indoor wireless communication system. Firstly, we propose a novel MIMO antenna for access-point application. This proposed antenna can reduce the lateral length of the conventional access-point antenna for MIMO application. Then, we present MIMO antenna designs for mobile devices such as PDA phones and laptop computers. Although these two devices are of different configurations, the PIFAs are applicable in these two devices, and their design rules are basically the same. Thus, for this study, the design consideration of the MIMO antenna will focus on S-parameter analysis. Detailed antenna designs and experimental results are presented and discussed in this thesis.
|
96 |
Multi-transducer Ultrasonic CommunicationErsagun, Erdem 01 February 2009 (has links) (PDF)
RF and acoustic communications are widely used in terrestrial and underwater environments, respectively. This thesis examines the use of ultrasonic communication alternately in terrestrial applications. We first investigate the ultrasonic channel in order to observe whether reliable communication is possible among the ultrasonic nodes as an alternative to RF-based communications. Some key characteristics of the single-input-single-output (SISO) and single-inputmultiple-
output (SIMO) ultrasonic channel are inspected with extensive
experiments utilizing ultrasonic transmitters and receivers. Well known receiver diversity techniques are employed to combine the observations of multiple receiving ultrasonic transducers in a SIMO scheme and receiver diversity gain is
attained. The thesis also covers the implementation of a receiver node by using a low-cost microcontroller.
|
97 |
An Overview Of Detection In Mimo RadarBilgi Akdemir, Safak 01 September 2010 (has links) (PDF)
In this thesis study, an overview of MIMO radar is presented. The differences in radar cross section, channel and received signal models in different MIMO radar configurations are examined. The performance improvements that can be achieved by the use of waveform diversity in coherent MIMO radar and by the use of angular diversity in statistical MIMO radar are investigated. The optimal detector under Neyman-Pearson criterion for Coherent MIMO radar when the interfering signal is white Gaussian noise is developed. Detection performance of phased array radar, coherent MIMO radar and Statistical MIMO radar are compared through numerical simulations. A detector for MIMO radar that contains the space time codes explicitly is also examined.
|
98 |
A PAPR Reduction Scheme for SFBC MIMO-OFDM SystemsTsai, Kun-Han 11 August 2009 (has links)
In multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system which was used space frequency block coding (SFBC) method. It order to reduce the peak-to-average power ratio in several transmit antennas. We proposed two new architectures to simply the computational complexity on transmitter. According to the characteristics of SFBC structure which have M transmitter antennas. We can decomposed the interleaving subcarrier groups by used conversion vector to circular convolution with signal vector and shrink the inverse fast Fourier transform (IFFT) points. Therefore it can do the SFBC coding operation in time domain. By using combination of different cyclic shifts and phase rotations in U subcarrier groups can generate the P candidate signals. And it wouldn¡¦t increase the number of IFFT. The proposed transmitter architectures can improve the major drawback of high computational complexity in traditional selected mapping (SLM). The traditional SLM generate the P candidate signals needs MP IFFT units. Then in the condition of lose a little PAPR reduction performance, we can save the most of computational complexity.
|
99 |
Manifold signal processing for MIMO communicationsInoue, Takao, doctor of electrical and computer engineering 13 June 2011 (has links)
The coding and feedback inaccuracies of the channel state information (CSI) in limited feedback multiple-input multiple-output (MIMO) wireless systems can severely impact the achievable data rate and reliability. The CSI is mathematically represented as a Grassmann manifold or manifold of unitary matrices. These are non-Euclidean spaces with special constraints that makes efficient and high fidelity coding especially challenging. In addition, the CSI inaccuracies may occur due to digital representation, time variation, and delayed feedback of the CSI. To overcome these inaccuracies, the manifold structure of the CSI can be exploited. The objective of this dissertation is to develop a new signal processing techniques on the manifolds to harvest the benefits of MIMO wireless systems. First, this dissertation presents the Kerdock codebook design to represent the CSI on the Grassmann manifold. The CSI inaccuracy due to digital representation is addressed by the finite alphabet structure of the Kerdock codebook. In addition, systematic codebook construction is identified which reduces the resource requirement in MIMO wireless systems. Distance properties on the Grassmann manifold are derived showing the applicability of the Kerdock codebook to beam-forming and spatial multiplexing systems. Next, manifold-constrained algorithms to predict and encode the CSI with high fidelity are presented. Two prominent manifolds are considered; the Grassmann manifold and the manifold of unitary matrices. The Grassmann manifold is a class of manifold used to represent the CSI in MIMO wireless systems using specific transmission strategies. The manifold of unitary matrices appears as a collection of all spatial information available in the MIMO wireless systems independent of specific transmission strategies. On these manifolds, signal processing building blocks such as differencing and prediction are derived. Using the proposed signal processing tools on the manifold, this dissertation addresses the CSI coding accuracy, tracking of the CSI under time variation, and compensation techniques for delayed CSI feedback. Applications of the proposed algorithms in single-user and multiuser systems show that most of the spatial benefits of MIMO wireless systems can be harvested. / text
|
100 |
Performance bounds in terms of estimation and resolution and applications in array processingTran, Nguyen Duy 24 September 2012 (has links) (PDF)
This manuscript concerns the performance analysis in signal processing and consists into two parts : First, we study the lower bounds in characterizing and predicting the estimation performance in terms of mean square error (MSE). The lower bounds on the MSE give the minimum variance that an estimator can expect to achieve and it can be divided into two categories depending on the parameter assumption: the so-called deterministic bounds dealing with the deterministic unknown parameters, and the so-called Bayesian bounds dealing with the random unknown parameter. Particularly, we derive the closed-form expressions of the lower bounds for two applications in two different fields: (i) The first one is the target localization using the multiple-input multiple-output (MIMO) radar in which we derive the lower bounds in the contexts with and without modeling errors, respectively. (ii) The other one is the pulse phase estimation of X-ray pulsars which is a potential solution for autonomous deep space navigation. In this application, we show the potential universality of lower bounds to tackle problems with parameterized probability density function (pdf) different from classical Gaussian pdf since in X-ray pulse phase estimation, observations are modeled with a Poisson distribution. Second, we study the statistical resolution limit (SRL) which is the minimal distance in terms of the parameter of interest between two signals allowing to correctly separate/estimate the parameters of interest. More precisely, we derive the SRL in two contexts: array processing and MIMO radar by using two approaches based on the estimation theory and information theory. We also present in this thesis the usefulness of SRL in optimizing the array system.
|
Page generated in 0.0609 seconds