• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 47
  • 25
  • 23
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 507
  • 507
  • 386
  • 327
  • 187
  • 178
  • 135
  • 70
  • 70
  • 63
  • 60
  • 60
  • 59
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Adaptive Linearly Constrained Constant Modulus Conjugate Gradient Algorithm with Applications to Multiuser DS-CDMA Detector for Multipath Fading Channel

Wang, Sheng-Meng 04 July 2003 (has links)
The direct-sequence code division multiple access (DS-CDMA) is one of the significant techniques for wireless communication systems with multiple simultaneous transmissions. The main concern of this thesis is to propose a new linearly constrained constant modulus modified conjugate gradient (LCCM-MCG) adaptive filtering algorithm to deal with problem of channel mismatch associated with the multiple access interference (MAI) in DS-CDMA system over multipath fading channel. In fact, the adaptive filtering algorithm based on the CM criterion is known to be very attractive for the case when the channel parameters are not estimated perfectly. The proposed LCCM-MCG algorithm is derived based on the so-called generalized sidelobe canceller (GSC). It has the advantage of having better stability and less computational complexity compared with conventional recursive least-squares (RLS) algorithm, and can be used to achieve desired performance for multiuser RAKE receiver. Moreover, with the MCG algorithm it requires only one recursive iteration per incoming sample data for updating the weight vector, but still maintains performance comparable to the RLS algorithm. From computer simulation results, we show that the proposed LCCM-MCG algorithm has fast convergence rate and could be used to circumvent the effect due to channel mismatch. Also, the performance, in terms of bit error rate (BER), is quite close to the LCCM-RLS algorithm suggested in [18], and is superior to the stochastic gradient descent (SGD) algorithm proposed in [7].
362

Subspace-Based Semi-Blind Channel Estimation in Uplink OFDMA Systems

Pan, Chun-Hsien 04 August 2008 (has links)
This thesis investigates the semi-blind channel estimation in uplink (UL) of Orthogonal Frequency Division Multiple Access (OFDMA) systems based on subspace decomposition. We exploit the orthogonality between signal subspace and noise subspace induced by virtual carriers (VCs) and cyclic prefix (CP) and the property of that the exclusive sub-carriers set is assigned to each user to estimate and identify the channels for each user individually. In OFDMA systems, when some users don¡¦t communicate with base station, the sub-carriers of non-active user provide extra redundancy for channel estimate to enhance the accuracy of channel estimation. Furthermore, the sufficient channel identifiability condition is developed. Furthermore, a novel scheme, called as virtual carriers recovery (VCR) scheme, is proposed to improve the performance of the subspace-based channel estimation method. It suppresses the noise interference by recovering the VCs to zeros at receiver. The simulation results illustrate that the enhancement of VCR scheme is particularly apparent for the partially loaded OFDMA system at low signal to noise ratio (SNR). In addition, the VCR scheme increases the convergence rate of the subspace-base semi-blind channel estimation.
363

Overview of the Telemetry Network System (TMNS) RF Data Link Layer

Kaba, James, Connolly, Barbara 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / As the integrated Network Enhanced Telemetry (iNET) program prepares for developmental flights tests, refinements are being made to the Radio Access Network Standard that ensures interoperability of networked radio components. One key aspect of this interoperability is the definition of Telemetry Network System (TmNS) RF Data Link Layer functionality for conducting efficient communications between radios in a TDMA (Time Division Multiple Access) channel sharing scheme. This paper examines the overall structure of the TmNS RF Data Link Layer and provides an overview of its operation. Specific topics include Medium Access Control (MAC) scheduling and framing in the context of a burst-oriented TDMA structure, link layer encryption, the priority-enabled Automatic Repeat reQuest (ARQ) protocol, high-level network packet and link control message encapsulation, payload segmentation and reassembly, and radio Link Layer Control Messaging.
364

Spatial spectrum reuse in wireless networks design and performance

Kim, Yuchul 01 June 2011 (has links)
This dissertation considers the design, evaluation and optimization of algorithms/ techniques/ system parameters for distributed wireless networks specifically ad-hoc and cognitive wireless networks. In the first part of the dissertation, we consider ad-hoc networks using opportunistic carrier sense multiple access (CSMA) protocols. The key challenge in optimizing the performance of such systems is to find a good compromise among three interdependent quantities: the density and channel quality of the scheduled transmitters, and the resulting interference seen at receivers. We propose two new channel-aware slotted CSMA protocols and study the tradeoffs they achieve amongst these quantities. In particular, we show that when properly optimized these protocols offer substantial improvements relative to regular CSMA -- particularly when the density of nodes is moderate to high. Moreover, we show that a simple quantile based opportunistic CSMA protocol can achieve robust performance gains without requiring careful parameter optimization. In the second part of the dissertation, we study a cognitive wireless network where licensed (primary) users and unlicensed 'cognitive' (secondary) users coexist on shared spectrum. In this context, many system design parameters affect the joint performance, e.g., outage and capacity, seen by the two user types. We explore the performance dependencies between primary and secondary users from a spatial reuse perspective, in particular, in terms of the outage probability, node density and joint network capacity. From the design perspective the key system parameters determining the joint transmission capacity, and tradeoffs, are the detection radius (detection signal to interference and noise power ratio (SINR) threshold) and decoding SINR threshold. We show how the joint network capacity region can be optimized by varying these parameters. In the third part of the dissertation, we consider a cognitive network in a heterogeneous environment, including indoor and outdoor transmissions. We characterize the joint network capacity region under three different spectrum (white space) detection techniques which have different degrees of radio frequency (RF) - environment awareness. We show that cognitive devices relying only on the classical signal energy detection method perform poorly due to limitations on detecting primary transmitters in environments with indoor shadowing. This can be circumvented through direct use (e.g., database access) of location information on primary transmitters, or better yet, on that of primary receivers. We also show that if cognitive devices have positioning information, then the secondary network's capacity increases monotonically with increased indoor shadowing in the environment. This dissertation extends the recent efforts in using stochastic geometric models to capture large scale performance characteristics of wireless systems. It demonstrates the usefulness of these models towards understanding the impact of physical /medium access (MAC) layer parameters and how they might be optimized. / text
365

Στρατηγικές που επιτυγχάνουν την χωρητικότητα σε κανάλια ενός ή περισσοτέρων χρηστών

Καραχοντζίτης, Σωτήρης 16 March 2009 (has links)
Ο υπολογισμός της χωρητικότητας Shannon ενός τηλεπικοινωνιακού καναλιού είναι ένα από τα κλασικά προβλήματα της θεωρίας πληροφορίας. Η τιμή της προσδιορίζει το μέγιστο δυνατό ρυθμό αξιόπιστης μετάδοσης μέσα από το κανάλι και αποτελεί ρυθμιστική παράμετρο κατά το σχεδιασμό κάθε τηλεπικοινωνιακού συστήματος. Στις πιο ενδιαφέρουσες περιπτώσεις ο υπολογισμός καταλήγει σε ένα πρόβλημα βελτιστοποίησης για το οποίο δε μπορεί να δοθεί αναλυτική λύση, οπότε καταφεύγουμε στη χρήση προσεγγιστικών μεθόδων ή στη διατύπωση φραγμάτων. Στα πλαίσια της εργασίας μελετάται η χωρητικότητα Shannon τηλεπικοινωνιακών καναλιών ενός ή πολλαπλών χρηστών. Η μελέτη ξεκινά από την απλές περιπτώσεις του διακριτού καναλιού χωρίς μνήμη (DMC) και του καναλιού AWGN και επεκτείνεται στις πιο ενδιαφέρουσες περιπτώσεις των σύμφωνων ή μη (coherence/non-coherence) καναλιών διάλειψης, σε κανάλια με μνήμη, κανάλια πολλαπλών κεραιών και κανάλια πολλαπλών χρηστών. Σε κάθε περίπτωση καταγράφονται τα σημαντικότερα ερευνητικά αποτελέσματα σχετικά με το πρόβλημα προσδιορισμού της χωρητικότητας, τη συμπεριφορά της σε σχέση με τους παράγοντες του τηλεπικοινωνιακού μοντέλου, του αλγοριθμικού υπολογισμού της και τα χαρακτηριστικά που πρέπει να έχει η είσοδος ώστε να επιτυγχάνεται η τιμή της. / Computing the Shannon Capacity of a communication channel is one of the classic problems of information theory. Its value determine the maximum possible rate of reliable transmission through the channel and constitutes a design parameter during the designing of the communication system. In most interesting cases the problem ending to an optimization problem which can’t be solved analytically, so we refuge to approximating methods and we can only state bounds for the region in which capacity belongs. In this thesis we study the Shannon Capacity of single user and multiple user communications systems. The study begins with the simple cases of Discrete Memoryless Channel (DMC) and AWGN channel and goes further to more interesting cases like coherence/non-coherence fading channels, channels with memory, multiple antenna channels and channels with multiple users. In each case, we present the most important scientific results considering the problem of capacity, its behavior in relation to the parameters of the communication model, its algorithmic computation and the characteristics of the optimal input.
366

Achievable rates for Gaussian Channels with multiple relays

Coso Sánchez, Aitor del 12 September 2008 (has links)
Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas, sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energía transmitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el procesado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en escenarios con alta dispersión.Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin embargo, la capacidad exacta de las comunicaciones con repetidores (así como la manera en que este esquema funciona con respeto al MIMO equivalente) es todavía un problema no resuelto. A dicho problema dedicamos esta tesis.En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaussianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conocidos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en transmisión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos límites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un límite superior, obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, así como la del límite superior.A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repetidores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut, y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin límite. Dicho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con repetidores.Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado: i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal, demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Utilizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teoría de optimización convexa. / Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of frequency-flat wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmitted power onto a desired eigen-direction, or ii) tocode across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large capacity (and reliability) gains within rich-scattered scenarios.Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay nodes assisting the communication between a set of single-antenna sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels can be mimicked in a distributed way. However, the exact channel capacity of single-antenna communications with relays (and how this scheme performs with respect to the equivalent MIMO channel) is a long-standing open problem. To it we have devoted this thesis.In particular, the present dissertation aims at studying the capacity of Gaussian channels when assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct link between them, while both have direct link from the source and towards the destination. We focus on three well-known channels: the point-to-point channel, the multi-access channel and the broadcast channel, and study their performance improvement with relays. All over the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii) transmit and receive channel state information available at all network nodes, and iii) time-invariant, memory-less fading.Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to a single destination in the presence of N parallel relays. The capacity of the channel is lower bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theorem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates are presented, as well as the one of the upper bound.Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel relays. The channel consists of multiple users simultaneously communicating to a single destination in the presence of N parallel relay nodes. We bound the capacity region of the channel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the asymptotic performance of the obtained achievable sum-rates, given the number of users growing without bound. Such a study allows us to grasp the impact of multi-user diversity on access networks with relays.Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays. This consists of a single source communicating to multiple receivers in the presence of N parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward, respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds. That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power constraint. Using this result, the computation of the channel's weighted sum-rate with linear relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.
367

A MAC protocol for IP-based CDMA wireless networks.

Mahlaba, Simon Bonginkosi. January 2005 (has links)
The evolution of the intemet protocol (IP) to offer quality of service (QoS) makes it a suitable core network protocol for next generation networks (NGN). The QoS features incorporated to IP will enable future lP-based wireless networks to meet QoS requirements of various multimedia traffic. The Differentiated Service (Diffserv) Architecture is a promising QoS technology due to its scalability which arises from traffic flow aggregates. For this reason, in this dissertation a network infrastructure based on DiffServ is assumed. This architecture provides assured service (AS) and premium service (PrS) classes in addition to best-effort service (BE). The medium access control (MAC) protocol is one of the important design issues in wireless networks. In a wireless network carrying multimedia traffic, the MAC protocol is required to provide simultaneous support for a wide variety of traffic types, support traffic with delay and jitter bounds, and assign bandwidth in an efficient and fair manner among traffic classes. Several MAC protocols capable of supporting multimedia services have been proposed in the literature, the majority of which were designed for wireless A1M (Asynchronous Transfer Mode). The focus of this dissertation is on time division multiple access and code division multiple access (TDMAlCDMA) based MAC protocols that support QoS in lP-based wireless networks. This dissertation begins by giving a survey of wireless MAC protocols. The survey considers MAC protocols for centralised wireless networks and classifies them according to their multiple access technology and as well as their method of resource sharing. A novel TDMAlCDMA based MAC protocol incorporating techniques from existing protocols is then proposed. To provide the above-mentioned services, the bandwidth is partitioned amongst AS and PrS classes. The BE class utilizes the remaining bandwidth from the two classes because it does not have QoS requirements. The protocol employs a demand assignment (DA) scheme to support traffic from PrS and AS classes. BE traffic is supported by a random reservation access scheme with dual multiple access interference (MAl) admission thresholds. The performance of the protocol, i.e. the AS or PrS call blocking probability, and BE throughput are evaluated through Markov analytical models and Monte-Carlo simulations. Furthermore, the protocol is modified and incorporated into IEEE 802.16 broadband wireless access (BWA) network. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.
368

Concatenated space-time codes in Rayleigh fading channels.

Byers, Geoffrey James. 02 November 2011 (has links)
The rapid growth of wireless subscribers and services as well as the increased use of internet services, suggest that wireless internet access will increase rapidly over the next few years. This will require the provision of high data rate wireless communication services. However the problem of a limited and expensive radio spectrum coupled with the problem of the wireless fading channel makes it difficult to provide these services. For these reasons, the research area of high data rate, bandwidth efficient and reliable wireless communications is currently receiving much attention. Concatenated codes are a class of forward error correction codes which consist of two or more constituent codes. These codes achieve reliable communications very close to the Shannon limit provided that sufficient diversity, such as temporal or spatial diversity, is available. Space-time trellis codes (STTCs) merge channel coding and transmit antenna diversity to improve system capacity and performance. The main focus of this dissertation is on STTCs and concatenated STTCs in quasi-static and rapid Rayleigh fading channels. Analytical bounds are useful in determining the behaviour of a code at high SNRs where it becomes difficult to generate simulation results. A novel method is proposed to analyse the performance of STTCs and the accuracy of this analysis is compared to simulation results where it is shown to closely approximate system performance. The field of concatenated STTCs has already received much attention and has shown improved performance over conventional STTCs. It was recently shown that double concatenated convolutional codes in AWGN channels outperform simple concatenated codes. Motivated by this, two double concatenated STTC structures are proposed and their performance is compared to that of a simple concatenated STTCs. It is shown that double concatenated STTCs outperform simple concatenated STTCs in rapid Rayleigh fading channels. An analytical model for this system in rapid fading is developed which combines the proposed analytical method for STTCs with existing analytical techniques for concatenated convolutional codes. The final part of this dissertation considers a direct-sequencejslow-frequency-hopped (DSj SFH) code division multiple access (CDMA) system with turbo coding and multiple transmit antennas. The system model is modified to include a more realistic, time correlated Rayleigh fading channel and the use of side information is incorporated to improve the performance of the turbo decoder. Simulation results are presented for this system and it is shown that the use of transmit antenna diversity and side information can be used to improve system performance. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2002.
369

Scheduling in CDMA-based wireless packet networks.

Scriba, Stefan Martin. 10 November 2011 (has links)
Modern networks carry a wide range of different data types, each with its own individual requirements. The scheduler plays an important role in enabling a network to meet all these requirements. In wired networks a large amount of research has been performed on various schedulers, most of which belong to the family of General Processor Sharing (GPS) schedulers. In this dissertation we briefly discuss the work that has been done on a range of wired schedulers, which all attempt to differentiate between heterogeneous traffic. In the world of wireless communications the scheduler plays a very important role, since it can take channel conditions into account to further improve the performance of the network. The main focus of this dissertation is to introduce schedulers, which attempt to meet the Quality of Service requirements of various data types in a wireless environment. Examples of schedulers that take channel conditions into account are the Modified Largest Weighted Delay First (M-LWDF), as well as a new scheduler introduced in this dissertation, known as the Wireless Fair Largest Weighted Delay First (WF-LWDF) algorithm. The two schemes are studied in detail and a comparison of their throughput, delay, power, and packet dropping performance is made through a range of simulations. The results are compared to the performance offour other schedulers. The fairness ofM-LWDF and WFLWDF is determined through simulations. The throughput results are used to establish Chernoff bounds of the fairness of these two algorithms. Finally, a summary is given of the published delay bounds of various schedulers, and the tightness of the resultant bounds is discussed. / Thesis (M.Sc. Eng.)-University of Natal, Durban, 2003.
370

The implementation of a CDMA system on a FPGA-based software radio.

Ellis, Timothy. January 2000 (has links)
This dissertation exammes two of the rlsing technologies in the world of wireless, cellular communications - CDMA and the software radio. This thesis covers many of the issues related to these two emerging field s of wireless communications, establish ing a theoretical framework for the broader issues of implementation. To this end, the thesis covers many of the basic issues of spread spectrum communications, in addition to establishing the need for, and defining the role of, the software radio. Amalgamation of these two key areas of interest is embellished in a presentation of many of the concerns of implementing a specific CDMA system on a particular type of software radio - the Alcatel Altech Telecomms Flexible Radio Platform. Of primary concern in the research methodology embraced in this thesis is the mastering of a variety of analysis and implementation tools. Once the theoretical background has been substantiated by current expositions, the thesis launches along a highly deterministic route. First, the research issues are tested in a mathematical environment for suitability to the given task. Second, an analysis of the appropriateness of the technique for the software radio environment is undertaken, culminating in the attempted deployment within the hardware environmenl. Rigorous testing of the input/output mapping characteristics of the hardware instantiations created in this manner complements the research methodology with a viability study. This procedure is repeated with many elements of the CDMA system design as they are examined, simu lated, deployed and tested. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2000.

Page generated in 0.0554 seconds