Spelling suggestions: "subject:"multipotent"" "subject:"multipotente""
1 |
Sensory neurons: stem cells and development /Hjerling-Leffler, Jens, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
|
2 |
Using induced pluripotent stem cells to establish disease models with neurodegenerative disordersTan, Yuan January 2018 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
3 |
Function and tissue focus of daf-18/PTEN in maintaining blast cell multipotency and quiescence in Caenorhabditis elegans dauer larvaeTenen, Claudia January 2019 (has links)
Cellular quiescence, a reversible state of cell-cycle exit, and developmental potential, the ability to differentiate into appropriate cell types, are properties essential for normal development and stem cell function (reviewed in (Cheung and Rando, 2013; Fiore et al., 2018; Mihaylova et al., 2014). Understanding the mechanisms by which cells maintain quiescence has important implications for developmental biology, as this reversible state of cell-cycle exit is a key attribute of stem cells, as well as for cancer biology, as quiescence plays a key role in tumor dormancy and metastasis. Environmental conditions are key in regulating whether stem cells maintain quiescence or exit to resume divisions and developmentally progress. I aim to investigate how the properties of quiescence and developmental potential are retained over long periods of time and how they are appropriately regulated by external environmental inputs. The nematode Caenorhabditis elegans is an excellent model for investigating both of these questions because it is capable of entering and maintaining a developmentally arrested state for an unusually long time compared to the normal lifetime of the worm, and because the decision to enter this arrest is regulated entirely by external environmental inputs (Cassada and Russell, 1975).
Upon encountering conditions unfavorable for growth, C. elegans enters an alternative, developmentally arrested state called dauer diapause in which precursor cells remain quiescent for months – a period many times the lifespan of a worm grown under favorable conditions (Cassada and Russell, 1975). Maintaining precursors in this arrested state is important in order for the worms to develop normally once conditions improve and requires components of the conserved Insulin/Insulin-like (IIS) signaling pathway (Karp and Greenwald 2013 and this work); of note, the IIS pathway also regulates mammalian quiescence (Eijkelenboom and Burgering, 2013). Canonical regulation of dauer diapause includes IIS, TGFß, and dafachronic acid (DA)/nuclear hormone receptor (NHR) signaling (reviewed in (Murphy and Hu, 2013a)).
Here, I investigate how DAF-18, the sole C. elegans ortholog of the tumor suppressor PTEN (Phosphatase and tensin homolog) (Gil et al., 1999; Mihaylova et al., 1999; Ogg and Ruvkun, 1998; Rouault et al., 1999), maintains quiescence in dauer through regulation of these conserved signaling pathways using the C. elegans gonad as a model. The gonad is composed of somatic cells and the germline. Both the somatic gonad and germline develop post-embryonically from precursor cells present when dauer arrest occurs, and these precursor cells remain quiescent for the duration of dauer diapause (Cassada and Russell, 1975; Hong et al., 1998; Narbonne and Roy, 2006). After exit from dauer, division and differentiation resume. DAF-18/PTEN is required for germline quiescence during dauer diapause (Narbonne and Roy, 2006), and my results implicate DAF-18/PTEN in the control of quiescence of the somatic tissues as well, including the somatic gonad. In this role, DAF-18/PTEN activity in the somatic gonad non-autonomously coordinates both germline stem cell (GSC) and somatic gonad blast (SGB) quiescence. I have demonstrated this somatic gonad focus through mosaic analysis, tissue-specific rescue, and tissue-specific excision mosaics. We propose that DAF-18/PTEN mediates production of a signal promoting quiescence from the somatic gonad to the SGBs and GSCs and that this signal does not absolutely require or solely target the IIS, TGFß, or DA/NHR signaling pathways normally implicated in regulation of dauer diapause.
|
4 |
New Hypothesis on the Origin of MetastasesSCHISCHMANOV, NICOLA 02 1900 (has links)
No description available.
|
5 |
Evidence for a Novel Multipotent Mammary Progenitor with Pregnancy-Specific ActivityKaanta, Alice 20 December 2012 (has links)
The mouse mammary gland has emerged as a model system for studying processes involved in the development of epithelial tissues. Current evidence suggests the existence of a differentiation hierarchy in the mammary gland, consisting of a stem cell capable of reconstituting the tissue, progenitors with the capacity to produce specific functional cell types, and differentiated cells with limited or no repopulation potential. Although markers for mammary stem cells and progenitors have been identified, these populations have not been isolated to purity and our understanding of how they function in different stages of mammary development remains incomplete. Many adult stem cells are mitotically quiescent and can therefore retain a DNA or histone label significantly longer than differentiated cells. In an attempt to identify mammary stem cells/progenitors by histone label retention, I crossed a mouse carrying the tetracycline-inducible histone 2b/eGFP (H2BGFP) gene with tetracycline transactivator strains expected to induce H2BGFP in the mammary gland. H2BGFP expression was induced in the mammary gland until puberty and then chased for 6-8 weeks; \(H2BGFP^+\) label retaining cells were isolated and assayed. Transplantation experiments comparing MMTVrtTA/H2BGFP MECs isolated after induction to MMTVrtTA/H2BGFP MECs retaining label post-chase failed to prove that label retention enriches for stem cells/progenitors in the MMTVrtTA/H2BGFP system. During the course of these experiments, I unexpectedly discovered that MMTVrtTA induced H2BGFP expression exclusively in the \(CD24^+/CD29^+\) and \(CD24^+/CD29^{lo}\) populations, which contain stem cells and progenitors, respectively. Interestingly, I also discovered that H2BGFP+/CD24+/CD29lo MECs developed limited mammary outgrowths in vivo and that pregnancy increased the repopulation ability of these cells by 5-10-fold. H2BGFP+/CD24+/CD29lo outgrowths contained all mammary lineages and produced milk, but were unable to self-renew in serial transplant assays. Furthermore, \(H2BGFP^+/CD24^+/CD29^{lo}\) and \(H2BGFP^-/CD24^+/CD29^{lo}\) MECs had distinct gene expression profiles, with H2BGFP+/CD24+/CD29lo MECs expressing lower levels of transcripts involved in mammary development and differentiation. These data provide evidence for the existence of a multipotent, pregnancy-activated mammary progenitor and suggests that different progenitor populations are responsible for mammary expansion during puberty and pregnancy. Future studies may identify FACS markers for purification of pregnancy-activated progenitors and further elucidate the role of different mammary cell types during pregnancy.
|
6 |
Establishing tissue-specific chromatin organization during development of the epidermis : nuclear architecture of different layers of murine epidermis and the role of p63 and Satb1 in establishing tissue-specific organization of the epidermal differentiation complex locusGdula, Michal Ryszard January 2011 (has links)
During development, multipotent stem cells establish tissue-specific programmes of gene expression that underlie a process of differentiation into specialized cell types. It was shown in the study that changes in the nuclear architecture during terminal keratinocyte differentiation show correlation with the dynamics of the transcriptional and metabolic activity. In particular, terminal differentiation is accompanied by the decrease of nuclear volume, elongation of its shape, reduction of the number and fusion of nucleoli, increase in the number of centromeric clusters and a dramatic decrease of the transcriptional activity. Global changes in the nuclear architecture of epidermal keratinocytes are associated with marked remodelling of the higher-order chromatin structure of the epidermal differentiating complex (EDC). EDC is positioned peripherally in the epidermal nuclei at E11.5 when its genes show low expression levels and relocates towards the nuclear interior at E16.5 when EDC genes are markedly upregulated. P63 transcription factor serving as a master regulator of epidermal development is involved in the control of EDC relocation in epidermal progenitor cells. The epidermis of E16.5 p63KO exhibits significantly more peripheral positioning of the EDC loci, compared to wild-type. The genome organizer Satb1 serving as a direct p63 target controls higher order chromatin folding of the central part of EDC and Satb1 knockout mice show alterations of epidermal development and expression of the EDC encoded genes. Thus, this study shows that the programme of epidermal development and terminal differentiation is regulated by p63 and other factors and include marked remodelling of three-dimensional nuclear organization and positioning of tissue specific gene loci. In addition to the direct involvement of p63 in controlling the expression of tissue-specific genes, p63 via regulation of the chromatin remodelling factors such as Satb1 promotes establishing specific conformation of the EDC locus required for efficient expression of terminal differentiation-associated genes.
|
7 |
Caracterização do secretoma de células multipotentes mesenquimais estromais de diferentes fontes / Characterization of the secretome of multipotent mesenchymal stromal cells from various tissuesAssoni, Amanda Faria 11 September 2015 (has links)
Células multipotentes mesenquimais estromais (CTM) são células adultas multipotentes que podem ser isoladas a partir de diferentes tecidos e são capazes de atingir sítios danificados, exercer papéis na regeneração tecidual e modular a resposta imune. Estas células demonstraram resultados discrepantes em estudos in vivo dependentes de sua fonte de obtenção. Há na literatura hipóteses de que o mecanismo predominante pelo qual as CTMs atuam no reparo tecidual estaria relacionado à sua atividade parácrina, criando um microambiente com sinais tróficos. Nesse sentido, a avaliação do conteúdo do secretoma destas células é de grande interesse. Portanto, este projeto teve como objetivo analisar o meio condicionado de CTMs obtidas de diferentes fontes (tecido adiposo, músculo esquelético e tubas uterinas) de mesmos indivíduos. A abordagem experimental consistiu em proteômica shotgun (nanocromatografia líquida acoplada a espectrometria de massas em tandem) com o intuito de identificar alvos diferentemente expressos entre as culturas que possam sugerir funções específicas de cada linhagem celular. Os dados espectrais foram obtidos pelo modo de aquisição dependente de dados (Top15). Os dados adquiridos foram processados pelas plataformas MaxQuant e TPP (Trans-Proteomic Pipeline). Foi realizada análise qualitativa de vias enriquecidas por meio do programa Ingenuity utilizando as proteínas em comum nos secretoma de todas as CTMs analisadas. Essa análise permitiu observar vias enriquecidas de proliferação celular, migração celular e desenvolvimento do sistema cardiovascular, demonstrando que as proteínas secretadas por quaisquer das CTMs analisadas podem ser relacionadas a resultados encontrados na literatura utilizando estas células para terapias para patologias. As análises estatísticas para determinar se haveria dependência da composição do secretoma em função do indivíduo doador ou tecido fonte das CTMs revelaram proteínas diferencialmente expressas entre todos os grupos. Estas proteínas diferencialmente expressas são relacionadas à proliferação, sinalização e interação celular, além de modulação do sistema imune e da angiogênese. Neste contexto, podemos concluir que o secretoma das CTMs é muito semelhante, que as CTMs isoladas de quaisquer tecidos ou indivíduos são capazes de secretar moléculas que possivelmente exercem benefícios em determinado tratamento. Entretanto, estes benefícios podem ser exacerbados ou suprimidos pelas moléculas diferencialmente expressas, as quais são dependentes tanto dos tecidos quanto dos indivíduos dos quais as CTMs foram obtidas / Multipotent Mesenchymal Stromal Cells (MSCs) are multipotent adult cells that can be isolated from different tissues and are able to reach damaged sites, play a role in tissue regeneration and modulate immune response. These cells showed conflicting results in studies in vivo depending on their tissue origin. It is hypothesised that the predominant mechanism by which MSCs function could be related to its paracrine activity, creating a microenvironment with trophic signals. Accordingly, the evaluation of the content of the secretome of these cells is of great interest. Towards this end, this project analyzed the proteins of conditioned medium of MSCs obtained from different sources from the same donors (adipose tissue, uterine tubes and skeletal muscle). The MSCs were characterized by flow cytometry for the presence of membrane markers and by differentiation in vitro into adipocytes, chondrocytes, and osteoblasts. The conditioned media were obtained and the protein profile was analysed by liquid nanochromatography coupled to tandem mass spectrometry. Spectral data were obtained by full-acquisition mode MS / dd-MS2 (Top15). The acquired data were processed by MaxQuant software and TPP (Trans-Proteomic Pipeline). Qualitative analysis of enriched pathways through the Ingenuity program using the shared proteins between the cell lineages was performed.It showed enriched pathways related to cell proliferation, cell migration and development of the cardiovascular system. This allows considering that the secreted proteins from the analyzed MSCs might be related to findings in the literature using these cells for therapies. After this, the proteins were analyzed for differential expression by comparing the MSCs into groups of different sources or different donors. In which were observed differentially expressed proteins related to proliferation, cell signaling and interaction, modulation of the immune system and angiogenesis. In this context, we can conclude that MSC\'s secretome is very similar in the analyzed lineages, and that any MSCs are able to secrete molecules which potentially exert for certain treatment benefits. However, these benefits can be exacerbated or annulled by differentially expressed molecules, which are dependent both as the individual and tissues from which MSCs were obtained
|
8 |
Molecular Study of Interactions between Hematopoietic Stem Cells and Stromal CellsLuo, Biao, Meng-Ling, Choong, Heard, Amanda, Li, Zhe, Moore, Kateri, Kaiser, Chris, Lemischka, Ihor R., Yap, Miranda G.S., Lodish, Harvey F. 01 1900 (has links)
Multipotent hematopoietic stem cells (HSCs) are progenitors of all types of hematopoietic cells, and the efficient isolation and propagation of HSCs will significantly enhance our ability to manage many human disorders with bone marrow transplantation, stem cell transplantation and gene therapy. We employed "Signal Sequence Trap (SST)" method with yeast invertase to clone proteins on the surface of or secreted by stromal cells that enhance or inhibit the propagation of HSC’s in culture. AFT024, a mouse fetal liver stromal cell line that maintains stem cell activity in long-term culture, was subjected to SST analysis. We identified more than 60 signal sequences or transmembrane domain containing genes expressed by AFT024 cells. We compared their expression levels between AFT024 cells and BFC012 cells, a mouse fetal liver stromal cell line that was developed in the same way as for AFT024 cells but could not support HSC in long-term culture. Pleiotrophin, T16, Sca-1, deltalike and cytokine receptor like-1(CLF-1) are expressed significantly higher in AFT024 cells than in BFC012 cells. We recently employed Affymatrix genechip technology to study the interaction of HSCs and their microenvironment. In genechip experiments, Sca-1, deltalike, pleiotrophin and CLF-1 are among the most differentially expressed genes between AFT024 and BFC012 cells, while T16 was not represented on the chip. In addition, osteopontin, pigment epithelium-derived factor, proliferins, activin subunit, CXC chemokines GRO1 and LIX are more abundant in AFT024 cells than in BFC012 cells. Genechip technology was also applied to bone marrow stromal cell lines, including MS5, S17 and OP9 cells. Two murine multipotent hematopoietic cell lines, FDCP.mix and EML cells, were also analyzed. Data from these experiments are presented. / Singapore-MIT Alliance (SMA)
|
9 |
Caracterização do secretoma de células multipotentes mesenquimais estromais de diferentes fontes / Characterization of the secretome of multipotent mesenchymal stromal cells from various tissuesAmanda Faria Assoni 11 September 2015 (has links)
Células multipotentes mesenquimais estromais (CTM) são células adultas multipotentes que podem ser isoladas a partir de diferentes tecidos e são capazes de atingir sítios danificados, exercer papéis na regeneração tecidual e modular a resposta imune. Estas células demonstraram resultados discrepantes em estudos in vivo dependentes de sua fonte de obtenção. Há na literatura hipóteses de que o mecanismo predominante pelo qual as CTMs atuam no reparo tecidual estaria relacionado à sua atividade parácrina, criando um microambiente com sinais tróficos. Nesse sentido, a avaliação do conteúdo do secretoma destas células é de grande interesse. Portanto, este projeto teve como objetivo analisar o meio condicionado de CTMs obtidas de diferentes fontes (tecido adiposo, músculo esquelético e tubas uterinas) de mesmos indivíduos. A abordagem experimental consistiu em proteômica shotgun (nanocromatografia líquida acoplada a espectrometria de massas em tandem) com o intuito de identificar alvos diferentemente expressos entre as culturas que possam sugerir funções específicas de cada linhagem celular. Os dados espectrais foram obtidos pelo modo de aquisição dependente de dados (Top15). Os dados adquiridos foram processados pelas plataformas MaxQuant e TPP (Trans-Proteomic Pipeline). Foi realizada análise qualitativa de vias enriquecidas por meio do programa Ingenuity utilizando as proteínas em comum nos secretoma de todas as CTMs analisadas. Essa análise permitiu observar vias enriquecidas de proliferação celular, migração celular e desenvolvimento do sistema cardiovascular, demonstrando que as proteínas secretadas por quaisquer das CTMs analisadas podem ser relacionadas a resultados encontrados na literatura utilizando estas células para terapias para patologias. As análises estatísticas para determinar se haveria dependência da composição do secretoma em função do indivíduo doador ou tecido fonte das CTMs revelaram proteínas diferencialmente expressas entre todos os grupos. Estas proteínas diferencialmente expressas são relacionadas à proliferação, sinalização e interação celular, além de modulação do sistema imune e da angiogênese. Neste contexto, podemos concluir que o secretoma das CTMs é muito semelhante, que as CTMs isoladas de quaisquer tecidos ou indivíduos são capazes de secretar moléculas que possivelmente exercem benefícios em determinado tratamento. Entretanto, estes benefícios podem ser exacerbados ou suprimidos pelas moléculas diferencialmente expressas, as quais são dependentes tanto dos tecidos quanto dos indivíduos dos quais as CTMs foram obtidas / Multipotent Mesenchymal Stromal Cells (MSCs) are multipotent adult cells that can be isolated from different tissues and are able to reach damaged sites, play a role in tissue regeneration and modulate immune response. These cells showed conflicting results in studies in vivo depending on their tissue origin. It is hypothesised that the predominant mechanism by which MSCs function could be related to its paracrine activity, creating a microenvironment with trophic signals. Accordingly, the evaluation of the content of the secretome of these cells is of great interest. Towards this end, this project analyzed the proteins of conditioned medium of MSCs obtained from different sources from the same donors (adipose tissue, uterine tubes and skeletal muscle). The MSCs were characterized by flow cytometry for the presence of membrane markers and by differentiation in vitro into adipocytes, chondrocytes, and osteoblasts. The conditioned media were obtained and the protein profile was analysed by liquid nanochromatography coupled to tandem mass spectrometry. Spectral data were obtained by full-acquisition mode MS / dd-MS2 (Top15). The acquired data were processed by MaxQuant software and TPP (Trans-Proteomic Pipeline). Qualitative analysis of enriched pathways through the Ingenuity program using the shared proteins between the cell lineages was performed.It showed enriched pathways related to cell proliferation, cell migration and development of the cardiovascular system. This allows considering that the secreted proteins from the analyzed MSCs might be related to findings in the literature using these cells for therapies. After this, the proteins were analyzed for differential expression by comparing the MSCs into groups of different sources or different donors. In which were observed differentially expressed proteins related to proliferation, cell signaling and interaction, modulation of the immune system and angiogenesis. In this context, we can conclude that MSC\'s secretome is very similar in the analyzed lineages, and that any MSCs are able to secrete molecules which potentially exert for certain treatment benefits. However, these benefits can be exacerbated or annulled by differentially expressed molecules, which are dependent both as the individual and tissues from which MSCs were obtained
|
10 |
Establishing tissue-specific chromatin organization during development of the epidermis. Nuclear architecture of different layers of murine epidermis and the role of p63 and Satb1 in establishing tissue-specific organization of the epidermal differentiation complex locus.Gdula, Michal R. January 2011 (has links)
During development, multipotent stem cells establish tissue-specific
programmes of gene expression that underlie a process of differentiation into
specialized cell types.
It was shown in the study that changes in the nuclear architecture during
terminal keratinocyte differentiation show correlation with the dynamics of the
transcriptional and metabolic activity. In particular, terminal differentiation is
accompanied by the decrease of nuclear volume, elongation of its shape,
reduction of the number and fusion of nucleoli, increase in the number of
centromeric clusters and a dramatic decrease of the transcriptional activity.
Global changes in the nuclear architecture of epidermal keratinocytes are
associated with marked remodelling of the higher-order chromatin structure of
the epidermal differentiating complex (EDC). EDC is positioned peripherally in
the epidermal nuclei at E11.5 when its genes show low expression levels and
relocates towards the nuclear interior at E16.5 when EDC genes are markedly
upregulated.
P63 transcription factor serving as a master regulator of epidermal development
is involved in the control of EDC relocation in epidermal progenitor cells. The
epidermis of E16.5 p63KO exhibits significantly more peripheral positioning of
the EDC loci, compared to wild-type.
The genome organizer Satb1 serving as a direct p63 target controls higher
order chromatin folding of the central part of EDC and Satb1 knockout mice
show alterations of epidermal development and expression of the EDC
encoded genes. Thus, this study shows that the programme of epidermal development and
terminal differentiation is regulated by p63 and other factors and include marked
remodelling of three-dimensional nuclear organization and positioning of tissue
specific gene loci. In addition to the direct involvement of p63 in controlling the
expression of tissue-specific genes, p63 via regulation of the chromatin
remodelling factors such as Satb1 promotes establishing specific conformation
of the EDC locus required for efficient expression of terminal differentiation-associated genes.
|
Page generated in 0.0826 seconds