• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 13
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 39
  • 28
  • 18
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 10
  • 9
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Účinky multipotentních sloučenin ovlivňujících neurotransmisi ve farmakologických animálních modelech kognitivního deficitu / Effects of Neurotransmission-Modulating Multipotent Compounds in Pharmacological Animal Models of Cognitive Deficit

Chvojková, Markéta January 2021 (has links)
In preclinical research on Alzheimer's disease pharmacotherapy, attention is paid to multipotent compounds, enabling intensification of the effect by targeting multiple pathophysiological mechanisms. The aim of the thesis was to assess the effect of multipotent compounds and combination therapy in models of cognitive deficit in the rat. The mechanism of action of the tested compounds was modulation of neurotransmitter systems. The aim of the first part of the study was to compare the effect of experimental monotherapy and combination therapy with an N-methyl-D-aspartate (NMDA) receptor antagonist and a γ-aminobutyric acid type A (GABAA) receptor positive modulator in the trimethyltin-induced model. Superiority of the combination therapy was proven by histological analysis of hippocampal neurodegeneration; however, it did not reach statistical significance in the cognitive test. The other part of the thesis focused on multipotent tacrine derivatives. We demonstrated a positive effect of 6- chlorotacrine-6-nitrobenzothiazole hybrid, as well as 6-chlorotacrine-L-tryptophan hybrid, acting as acetylcholinesterase inhibitors, in the scopolamine-induced model of cognitive deficit. Besides, we demonstrated a low risk of serious side effects of other tacrine derivatives acting as NMDA receptor antagonists....
42

Reconstitution of mouse inner ear sensory development from pluripotent stem cells

Koehler, Karl R. 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.
43

Differentiation and characterization of cell types associated with retinal degenerative diseases using human induced pluripotent stem cells

Gupta, Manav 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human induced pluripotent stem (iPS) cells have the unique ability to differentiate into 200 or so somatic cell types that make up the adult human being. The use of human iPS cells to study development and disease is a highly exciting and interdependent field that holds great promise in understanding and elucidating mechanisms behind cellular differentiation with future applications in drug screening and cell replacement studies for complex and currently incurable cellular degenerative disorders. The recent advent of iPS cell technology allows for the generation of patient-specific cell lines that enable us to model the progression of a disease phenotype in a human in vitro model. Differentiation of iPS cells toward the affected cell type provides an unlimited source of diseased cells for examination, and to further study the developmental progression of the disease in vitro, also called the “disease-in-a-dish” model. In this study, efforts were undertaken to recapitulate the differentiation of distinct retinal cell affected in two highly prevalent retinal diseases, Usher syndrome and glaucoma. Using a line of Type III Usher Syndrome patient derived iPS cells efforts were undertaken to develop such an approach as an effective in vitro model for studies of Usher Syndrome, the most commonly inherited disorder affecting both vision and hearing. Using existing lines of iPS cells, studies were also aimed at differentiation and characterization of the more complex retinal cell types, retinal ganglion cells (RGCs) and astrocytes, the cell types affected in glaucoma, a severe neurodegenerative disease of the retina leading to eventual irreversible blindness. Using a previously described protocol, the iPS cells were directed to differentiate toward a retinal fate through a step-wise process that proceeds through all of the major stages of neuroretinal development. The differentiation process was monitored for a period of 70 days for the differentiation of retinal cell types and 150 days for astrocyte development. The different stages of differentiation and the individually derived somatic cell types were characterized by the expression of developmentally associated transcription factors specific to each cell type. Further approaches were undertaken to characterize the morphological differences between RGCs and other neuroretinal cell types derived in the process. The results of this study successfully demonstrated that Usher syndrome patient derived iPS cells differentiated to the affected photoreceptors of Usher syndrome along with other mature retinal cell types, chronologically analogous to the development of the cell types in a mature human retina. This study also established a robust method for the in vitro derivation of RGCs and astrocytes from human iPS cells and provided novel methodologies and evidence to characterize these individual somatic cell types. Overall, this study provides a unique insight into the application of human pluripotent stem cell biology by establishing a novel platform for future studies of in vitro disease modeling of the retinal degenerative diseases: Usher syndrome and glaucoma. In downstream applications of this study, the disease relevant cell types derived from human iPS cells can be used as tools to further study disease progression, drug screening and cell replacement strategies.

Page generated in 0.0656 seconds