• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enabling the Next Generation of Human Induced Pluripotent Stem Cell Derived Hematopoietic Stem Cell-Based Therapies

Wong, Casey 23 August 2023 (has links)
Human induced pluripotent stem cells (iPSCs) represent a scalable cell source for the generation of hematopoietic progenitor cells (iHPCs); however, a lack of efficient iHPC expansion in vitro currently limits translational applications. To address this translational bottleneck, we assessed a panel of stem cell agonist cocktails (SCACs), originally developed to enhance cord-blood derived HSPC (CB-HSPC) expansion, on iHPC expansion. Three SCACs and GAS6 (X2A, X2A+GAS6, SM6, or SMA) were supplemented during iHPC differentiation and subsequent expansion using the STEMdiff™ Hematopoietic Kit. This monolayer differentiation strategy yielded a population of CD34⁺CD43⁺ and CD45⁺CD34⁺ iHPC. SCAC supplementation during iHPC differentiation yielded up to 2.5-fold higher frequency of CD34⁺CD43⁺ hematopoietic progenitors and up to 2.9-fold higher frequency of CD45⁺CD34⁺CD45RA⁻CD90⁺ HSC-like cells compared to non-treated controls. Subsequent SCAC supplementation during 2 weeks of expansion culture also significantly increased iHPC expansion (X2A+GAS6: 3.8-fold, X2A: 3.5-fold, SM6: 2.8-fold, SMA: 2.0-fold). The expanded iHPCs retained high levels of CD34⁺CD43⁺ expression but we observed an increase in the expansion of HSC-like cell fraction. The collective expansion observed with the SCACs was 1.5- to 2.8-fold higher than UM171 treatment alone. Furthermore, all SCAC-supplemented iHPCs retained multilineage potency, producing erythroid and granulocyte-macrophage progenitors in CFU assays. However, prolonged expansion, beyond 7 days, reduced multilineage potential, indicating a limited expansion window. Although optimal timing and composition of SCAC supplementation remains to be refined, these results highlight that exploiting the additive and synergistic effects of multiple small molecules represents a promising approach for enhancing iHPC expansion yields and biomanufacturing.

Page generated in 0.1289 seconds