Spelling suggestions: "subject:"multiprocessor architecture"" "subject:"multiprocessors architecture""
1 |
General theory relating to the implementation of concurrent symbolic computationClarke, Thomas James Woodchurch January 1989 (has links)
No description available.
|
2 |
Emulation of a virtual shared memory architectureRaina, Sanjay January 1993 (has links)
No description available.
|
3 |
A Broadcast Cube-Based Multiprocessor Architecture for Solving Partial Differential EquationsMurthy, Siva Ram C 01 1900 (has links)
Indian Institute of Science / A large number of mathematical models in engineering and physical sciences employ Partial Differential Equations (PDEs). The sheer number of operations required in numerically integrating PDEs in these applications has motivated the search for faster methods of computing. The conventional uniprocessor computers are often unable to fulfill the performance requirements for these computation intensive problems. In this dissertation, a cost-effective message-based multiprocessor system which we call the Broadcast Cube System (BCS) has been proposed for solving important computation intensive problems such as, systems of linear algebraic equations and PDEs. A simulator for performance evaluation of parallel algorithms to be executed on the BCS has been implemented. A strategy (task assignment . algorithm) for assigning program tasks with precedence and communication constraints to the Processing Elements (PEs) in the BCS has been developed and its effectiveness demonstrated. This task assignment algorithm has been shown to produce optimal assignments for PDE problems. Optimal partitioning of the problems, solving systems of linear algebraic equations and PDEs, into tasks and their assignment to the PEs in the BCS have been given. Efficient parallel algorithms for solving these problems on the BCS have been designed. The performance of the parallel algorithms has been evaluated by both analytical and simulation methods. The results indicate that the BCS is highly effective in solving systems of linear algebraic equations and PDEs. The performance of these algorithms on the BCS has also been compared with that of their implementations on popular hypercube machines. The results show that the performance of the BCS is better than that of the hypercubes for linear algebraic equations and compares very well for PDEs, with a modest number of PEs despite the constant PE connectivity of three in the BCS. Finally, the effectiveness of the BCS in solving non-linear PDEs occurring in two important practical problems, (i) heat transfer and fluid flow simulation and (ii) global weather modeling, has been demonstrated.
|
4 |
Optimisation des transferts de données sur systèmes multiprocesseurs sur puce / Optimizing Data Transfers for Multiprocessor Systems on ChipsSaidi, Selma 24 October 2012 (has links)
Les systèmes multiprocesseurs sur puce, tel que le processeur CELL ou plus récemment Platform 2012, sont des architectures multicœurs hétérogènes constitués d'un processeur host et d'une fabric de calcul qui consiste en plusieurs petits cœurs dont le rôle est d'agir comme un accélérateur programmable. Les parties parallélisable d'une application, qui initialement est supposé etre executé par le host, et dont le calcul est intensif sont envoyés a la fabric multicœurs pour être exécutés. Ces applications sont en général des applications qui manipulent des tableaux trés larges de données, ces données sont stockées dans une memoire distante hors puce (off-chip memory) dont l 'accès est 100 fois plus lent que l 'accès par un cœur a une mémoire locale. Accéder ces données dans la mémoire off-chip devient donc un problème majeur pour les performances. une characteristiques principale de ces plateformes est une mémoire local géré par le software, au lieu d un mechanisme de cache, tel que les mouvements de données dans la hiérarchie mémoire sont explicitement gérés par le software. Dans cette thèse, l 'objectif est d'optimiser ces transfert de données dans le but de reduire/cacher la latence de la mémoire off-chip . / Multiprocessor system on chip (MPSoC) such as the CELL processor or the more recent Platform2012 are heterogeneous multi-core architectures, with a powerful host processor and a computation fabric, consisting of several smaller cores, whose intended role is to act as a general purpose programmable accelerator. Therefore computation-intensive (and parallelizable) parts of the application initially intended to be executed by the host processor are offloaded to the multi-cores for execution. These parts of the application are often data intensive, operating on large arrays of data initially stored in a remote off-chip memory whose access time is about 100 times slower than that of the cores local memory. Accessing data in the off-chip memory becomes then a main bottleneck for performance. A major characteristic of these platforms is a software controlled local memory storage rather than a hidden cache mechanism where data movement in the memory hierarchy, typically performed using a DMA (Direct Memory Access) engine, are explicitely managed by the software. In this thesis, we attempt to optimize such data transfers in order to reduce/hide the off-chip memory latency.
|
Page generated in 0.0934 seconds