• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 8
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 92
  • 27
  • 26
  • 23
  • 15
  • 14
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Topics in multisensor maneuvering target tracking

Jeong, Soonho, Tugnait, Jitendra K. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
12

A wireless sensor data fusion framework for contaminant detection /

Kiepert, Joshua. January 2009 (has links)
Thesis (M.S.)--Boise State University, 2009. / Includes abstract. Includes bibliographical references (leaves 67-69).
13

A wireless sensor data fusion framework for contaminant detection

Kiepert, Joshua. January 2009 (has links)
Thesis (M.S.)--Boise State University, 2009. / Title from t.p. of PDF file (viewed Apr. 23, 2010). Includes abstract. Includes bibliographical references (leaves [67-69]).
14

Model based image fusion

Kumar, Mrityunjay. January 2008 (has links)
Thesis (PH. D.)--Michigan State University. Electrical Engineering, 2008. / Title from PDF t.p. (viewed on Aug. 28, 2009) Includes bibliographical references (p. 91-99). Also issued in print.
15

Self-localization in ubiquitous computing using sensor fusion /

Zampieron, Jeffrey Michael Domenic. January 2006 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2006. / Typescript. Includes bibliographical references (leaves 87-90).
16

Information-theoretic management of mobile sensor agents

Tang, Zhijun, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xiii, 170 p.; also includes graphics (some col.). Includes bibliographical references (p. 162-170). Available online via OhioLINK's ETD Center
17

Sensor fusion for boost phase interception of ballistic missiles

Humali, I. Gokhan 09 1900 (has links)
Approved for public release; distribution is unlimited / In the boost phase interception of ballistic missiles, determining the exact position of a ballistic missile has a significant importance. Several sensors are used to detect and track the missile. These sensors differ from each other in many different aspects. The outputs of radars give range, elevation and azimuth information of the target while space based infrared sensors give elevation and azimuth information. These outputs have to be combined (fused) achieve better position information for the missile. The architecture that is used in this thesis is decision level fusion architecture. This thesis examines four algorithms to fuse the results of radar sensors and space based infrared sensors. An averaging technique, a weighted averaging technique, a Kalman filtering approach and a Bayesian technique are compared. The ballistic missile boost phase segment and the sensors are modeled in MATLAB. The missile vector and dynamics are based upon Newton's laws and the simulation uses an earth-centered coordinate system. The Bayesian algorithm has the best performance resulting in a rms missile position error of less than 20 m. / 1st Lieutenant, Turkish Air Force
18

Assessing the operational value of situational awareness for AEGIS and Ship Self Defense System (SSDS) platforms through the application of the Knowledge Value Added (KVA) methodology

Uchytil, Joseph. 06 1900 (has links)
As the United States Navy strives to attain a myriad of situational awareness systems that provide the functionality and interoperability required for future missions, the fundamental idea of open architecture is beginning to promulgate throughout the Department. In order to make rational, informed decisions concerning the processes and systems that will be integrated to provide this situational awareness, an analytical method must be used to identify process deficiencies and produce quantifiable measurement indicators. This thesis will apply the Knowledge Value Added methodology to the current processes involved in track management aboard the AEGIS and Ship Self Defense System (SSDS) platforms. Additional analysis will be conducted based on notional changes that could occur were the systems designed using an open architecture approach. A valuation based on knowledge assets will be presented in order to.
19

Binocular geometry and camera motion directly from normal flows. / CUHK electronic theses & dissertations collection

January 2009 (has links)
Active vision systems are about mobile platform equipped with one or more than one cameras. They perceive what happens in their surroundings from the image streams the cameras grab. Such systems have a few fundamental tasks to tackle---they need to determine from time to time what their motion in space is, and should they have multiple cameras, they need to know how the cameras are relatively positioned so that visual information collected by the respective cameras can be related. In the simplest form, the tasks are about finding the motion of a camera, and finding the relative geometry of every two cameras, from the image streams the cameras collect. / On determining the ego-motion of a camera, there have been many previous works as well. However, again, most of the works require to track distinct features in the image stream or to infer the full optical flow field from the normal flow field. Different from the traditional works, utilizing no motion correspondence nor the epipolar geometry, a new method is developed that operates again on the normal flow data directly. The method has a number of features. It can employ the use of every normal flow data, thus requiring less texture from the image scene. A novel formulation of what the normal flow direction at an image position has to offer on the camera motion is given, and this formulation allows a locus of the possible camera motion be outlined from every data point. With enough data points or normal flows over the image domain, a simple voting scheme would allow the various loci intersect and pinpoint the camera motion. / On determining the relative geometry of two cameras, there already exist a number of calibration techniques in the literature. They are based on the presence of either some specific calibration objects in the imaged scene, or a portion of the scene that is observable by both cameras. However, in active vision, because of the "active" nature of the cameras, it could happen that a camera pair do not share much or anything in common in their visual fields. In the first part of this thesis, we propose a new solution method to the problem. The method demands image data under a rigid motion of the camera pair, but unlike the existing motion correspondence-based calibration methods it does not estimate the optical flows or motion correspondences explicitly. Instead it estimates the inter-camera geometry from the monocular normal flows. Moreover, we propose a strategy on selecting optimal groups of normal flow vectors to improve the accuracy and efficiency of the estimation. / The relative motion between a camera and the imaged environment generally induces a flow field in the image stream captured by the camera. The flow field, which is about motion correspondences of the various image positions over the image frames, is referred to as the optical flows in the literature. If the optical flow field of every camera can be made available, the motion of a camera can be readily determined, and so can the relative geometry of two cameras. However, due to the well-known aperture problem, directly observable at any image position is generally not the full optical flow, but only the component of it that is normal to the iso-brightness contour of the intensity profile at the position. The component is widely referred to as the normal flow. It is not impossible to infer the full flow field from the normal flow field, but then it requires some specific assumptions about the imaged scene, like it is smooth almost everywhere etc. / This thesis aims at exploring how the above two fundamental tasks can be tackled by operating on the normal flow field directly. The objective is, without the full flow inferred explicitly in the process, and in turn no specific assumption made about the imaged scene, the developed methods can be applicable to a wider set of scenes. The thesis consists of two parts. The first part is about how the inter-camera geometry of two cameras can be determined from the two monocular normal flow fields. The second part is about how a camera's ego-motion can be determined by examining only the normal flows the camera observes. / We have tested the methods on both synthetic image data and real image sequences. Experimental results show that the developed methods are effective in determining inter-camera geometry and camera motion from normal flow fields. / Yuan, Ding. / Adviser: Ronald Chung. / Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: . / Thesis submitted in: October 2008. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 121-131). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
20

Design and implementation of a multi-agent systems laboratory

Jones, Malachi Gabriel. January 2009 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Jeff Shamma; Committee Member: Eric Feron; Committee Member: Magnus Egerstedt. Part of the SMARTech Electronic Thesis and Dissertation Collection.

Page generated in 0.1144 seconds