Spelling suggestions: "subject:"mumfordshah"" "subject:"mumfordova""
11 |
Image Segmentation Based On Variational TechniquesAltinoklu, Metin Burak 01 February 2009 (has links) (PDF)
In this thesis, the image segmentation methods based on the Mumford& / #8211 / Shah variational approach have been studied. By obtaining an optimum point of the Mumford-Shah functional which is a piecewise smooth approximate image and a set of edge curves, an image can be decomposed into regions. This piecewise smooth approximate image is smooth inside of regions, but it is allowed to be discontinuous region wise. Unfortunately, because of the irregularity of the Mumford Shah functional, it cannot be directly used for image segmentation. On the other hand, there are several approaches to approximate the Mumford-Shah functional. In the first approach, suggested by Ambrosio-Tortorelli, it is regularized in a special way. The regularized functional (Ambrosio-Tortorelli functional) is supposed to be gamma-convergent to the Mumford-Shah functional. In the second approach, the Mumford-Shah functional is minimized in two steps. In the first minimization step, the edge set is held constant and the resultant functional is minimized. The second minimization step is about updating the edge set by using level set methods. The second approximation to the Mumford-Shah functional is known as the Chan-Vese method. In both approaches, resultant PDE equations (Euler-Lagrange equations of associated functionals) are solved by finite difference methods. In this study, both approaches are implemented in a MATLAB environment. The overall performance of the algorithms has been investigated based on computer simulations over a series of images from simple to complicated.
|
12 |
Multiscale Active Contour Methods in Computer Vision with Applications in TomographyAlvino, Christopher Vincent 10 April 2005 (has links)
Most applications in computer vision suffer from two major difficulties. The first is they are notoriously ridden with sub-optimal local minima. The second is that they typically require high
computational cost to be solved robustly. The reason for these two drawbacks is that most problems in computer vision, even when
well-defined, typically require finding a solution in a very large high-dimensional space.
It is for these two reasons that multiscale methods are particularly well-suited to problems in computer vision. Multiscale methods, by
way of looking at the coarse scale nature of a problem before considering the fine scale nature, often have the ability to avoid sub-optimal local minima and obtain a more globally optimal solution. In addition, multiscale methods typically enjoy reduced computational
cost.
This thesis applies novel multiscale active contour methods to several problems in computer vision, especially in simultaneous segmentation
and reconstruction of tomography images. In addition, novel multiscale methods are applied to contour registration using minimal surfaces and to the computation of non-linear rotationally invariant optical flow. Finally, a methodology for fast robust image segmentation is presented that relies on a lower dimensional image
basis derived from an image scale space.
The specific advantages of using multiscale methods in each of these problems is highlighted in the various simulations throughout the
thesis, particularly their ability to avoid sub-optimal local minima and their ability to solve the problems at a lower overall
computational cost.
|
13 |
Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation / Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentationDebroux, Noémie 15 March 2018 (has links)
Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier deux images via une transformation, la segmentation d'images dont le but est de délimiter les contours des objets présents au sein d'une image, et la décomposition d'images intimement liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et sa partie complémentaire oscillante appelée texture, par des approches variationnelles locales et non locales. Les relations étroites existant entre ces différents problèmes motivent l'introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmontant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé aborde la problématique de recalage d'images guidé par des résultats intermédiaires de segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement puis mis à l'épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté tente de répondre à un besoin précis du CEREMA (Centre d'Études et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement) à savoir la détection automatique de fissures sur des images d'enrobés bitumineux. De part la complexité des images à traiter, une méthode conjointe de décomposition et de segmentation de structures fines est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les images fournies. / In this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images.
|
Page generated in 0.0255 seconds