• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of the Function of the Murine Cytomegalovirus Encoded G Protein-Coupled Receptor M33 in vivo

Bittencourt, Fabiola M. 17 October 2014 (has links)
No description available.
2

Role of the immuno-proteasome in CD8 responses to MCMV

Hutchinson, Sarah Louise January 2009 (has links)
No description available.
3

Investigation of MCMV-induced suppression of TNF production in vitro and in vivo

Martín, Sara Rodríguez January 2010 (has links)
The murine cytomegalovirus (MCMV) immediate early 1 (IE1) protein has been described as a trans-activator of viral and host gene expression. However, the precise role that IE1 plays in the viral life cycle, and in particular its effect on the host immune response is not known. This thesis investigates the functional relationship of the IE1 protein and the immune response induced after infection. By using an ie1-deletion mutant MCMV (MCMVdie1) it was demonstrated that, early after infection, tumor necrosis factor (tnf ) gene activation and protein production was significantly induced in infected-primary macrophages (M ) to a much greater extent than its wild type counterpart. In addition, preliminary studies on the signalling pathways activated upon infection were carried out in order to gain information about the pathways that might be involved in MCMVinduced modulation of tnf activation. Initial observations on the MAPK family members Erk1/2, p38 and JNK did not revealed any differential activation in the absence of IE1. However, due to a number of limitations, it was not possible to draw any firm conclusions from this study. Investigation of the role of IE1 in the in vivo production of TNF were also performed in both susceptible (BALB/c) and resistant (C57Bl/6) mice. These experiments confirmed the attenuated phenotype of MCMVdie1 in vivo, whereby the mutant strain grew to much lower titers than wild type. When cytokine production was assessed in relation to PFU levels a significant production of TNF after infection is observed in different organs of both mice strains. This raises the question whether IE1 contributes to MCMV modulation of TNF production in the natural host. Although, because it is still unclear whether the phenotype of MCMVdie1 in vivo is due to a defect in the virus or the result of a immune response, it was not possible to conclude unequivocally that IE1 is responsible for dampening this cytokine response. This thesis also tested whether the attenuated replication of MCMVdie1 in vivo was due to the increased TNF production induced after infection. An initial investigation in tnf depleted mice revealed that the MCMVdie1 growth phenotype is not due to TNF response. Overall, this study has provided insight into a potential immune modulatory function by MCMV associated with IE1 protein and the regulation of TNF in vivo and in vitro.
4

Suppressor of Cytokine Signaling (SOCS)1 and SOCS3 Stimulation during Experimental Cytomegalovirus Retinitis: Virologic, Immunologic, or Pathologic Mechanisms

Alston, Christine I. 06 January 2017 (has links)
AIDS-related human cytomegalovirus (HCMV) retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. Understanding the pathogenesis of this disease is essential for developing new, safe, and effective treatments for its prevention or management, yet much remains unknown about the virologic and immunologic mechanisms contributing to its pathology. To study such mechanisms, we use a well-established, reproducible, and clinically relevant animal model with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) that mimics in mice the symptoms and progression of AIDS in humans. Over 8 to 12 weeks, MAIDS mice become susceptible to experimental murine cytomegalovirus (MCMV) retinitis. We have found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling (SOCS)1 and SOCS3, host proteins which dampen immune-related signaling by cytokines, including antiviral interferons. Herein we investigated virologic and/or immunologic mechanisms involved in this stimulation and how virally-modulated SOCS1 and/or SOCS3 proteins may contribute to MCMV infection or experimental MAIDS-related MCMV retinitis. Through pursuit of two specific aims, we tested the central hypothesis that MCMV stimulates and employs SOCS1 and/or SOCS3 to induce the onset and development of MCMV retinal disease. MCMV-related SOCS1 and SOCS3 stimulation in vivo occurred with intraocular infection, was dependent on method and stage of immune suppression and severity of ocular pathology, was associated with stimulation of SOCS-inducing cytokines, and SOCS1 and SOCS3 were differentially sensitive to antiviral treatment. In vitro studies further demonstrated that SOCS1 and SOCS3 stimulation during MCMV infection occurred with expected immediate early kinetics, required viral gene expression in cell-type-dependent and virus origin-dependent patterns of expression, and displayed differential sensitivity to antiviral treatment. These data suggest that SOCS1 and SOCS3 are stimulated by divergent virologic, immunologic, and/or pathologic mechanisms during MCMV infection, and that they contribute to the pathogenesis of retinal disease, revealing new insights into the pathophysiology of AIDS-related HCMV retinitis.
5

Study of the interferon-oxysterol antiviral response and 3-Hydroxy-3-Methylglutaryl-CoA Reductase

Lu, Hongjin January 2017 (has links)
The oxysterol, 25-hydroxycholesterol (25-HC), is important for sterol metabolism and emerging evidence suggests that 25-HC plays a more critical role in immunity and infection. However, the precise antiviral mechanism and the target of 25- HC remains unclear. Here efforts were made to investigate the link between viral infection and the triggering of the 25-HC associated interferon (IFN) response, and how this dynamically alters the endogenous level of 3-hydroxy- 3-methylglutaryl-CoA reductase (HMGCR), a key enzyme that catalyses the production of the precursor of cholesterol and oxysterols. In this thesis I have sought to specifically explore the temporal changes and role of HMGCR in DNA virus (cytomegalovirus) and RNA (Influenza) virus infections. I hypothesise that HMGCR is a target for 25-HC associated IFN-mediated host defence against viral infection. To characterise HMGCR and test this hypothesis, the following objectives were defined: (1). To establish an experimental system to quantitatively study the endogenous HMGCR protein level; (2). To investigate the mechanism of the down-regulation of HMGCR involved in the IFN-mediated innate immune response; (3). To study the behaviour of HMGCR in the influenza virus induced 25-HC associated IFN-mediated innate immune response; (4). To study the behaviour of HMGCR in the cytomegalovirus induced 25-HC associated IFN-mediated innate immune response. Chapter 3, describes establishing an experimental system for the quantification of endogenous HMGCR levels. Different protein detection methods, including a modified western blot protocol and immunostaining, were tested. The results of RNA interference of HMGCR demonstrate that under lipid-deficient condition with the supplementation of mevastatin (an HMGCR inhibitor) the modified western blot protocol specifically detects endogenous HMGCR. This chapter lays the foundational work for the temporal analysis and testing the role of HMGCR in infection. In Chapter 4, the mechanism of the degradation of HMGCR following 25-HC and IFN treatments, in wild-type and Ch25h−/− mouse bone marrow derived macrophages (BMDMs), was investigated. Similar to 25-HC, IFN-γ treatment results in the drop of both the transcript and protein abundance of HMGCR in wild-type BMDMs. Differential temporal analysis of RNA and protein alterations and the use of proteasome inhibitors reveals that both 25-HC and IFN-γ lead to a marked reduction of HMGCR protein via a proteasomal degradation mechanism within early times of treatments. Further, the immediate reduction of HMGCR levels induced by IFN-γ was completely abrogated in Ch25h−/− BMDMs. Hence, the reduction of HMGCR following IFN-γ treatment is due to the de novo synthesis in macrophages of 25-HC. However, the decrease of Hmgcr gene expression was observed in not only wild-type but also Ch25h−/− BMDMs, suggesting additional mechanisms for regulating Hmgcr RNA levels. These results demonstrate the mechanism of the down-regulation of HMGCR resulted from the induction of IFN response during viral infection, is only partially due the de novo synthesis of 25-HC. In chapter 5, influenza A virus was used to investigate the role of HMGCR in the IFN-mediated innate immune response. The inhibition of HMGCR by RNA interference inhibited viral growth, suggesting the requirement of HMGCR for optimal intracellular viral growth. Viral infection in wild-type murine BMDMs reduced the endogenous HMGCR levels. However, the reduction of HMGCR at early times was prevented in Ch25h−/− BMDMs. Intriguingly, the decrease of HMGCR at late time points was still observed in Ch25h−/− BMDMs. These results indicate that the down-regulation of HMGCR with influenza virus infection in BMDMs at early times is completely due to the de novo synthesis of 25-HC; whereas at late times alternative pathways or mechanisms exist. Additionally, human epithelial A549 cells and A549/PIV5-V cells that are deficient in STAT1 were used to study the role of IFN pathway in the down-regulation of HMGCR at late times during viral infection. Results from these studies show that at late times the reduction of HMGCR is due to IFN-independent mechanisms. Chapter 6, extends these investigations to the herpes virus murine cytomegalovirus and infection of BMDMs. HMGCR is known to be essential for cytomegaloviral infections and 25-HC, statin and RNAi inhibition of HMGCR restrict viral growth. 25-HC is shown to reduce HMGCR at immediate early times of infection. However, most notably, the down-regulation of HMGCR was also observed in Ch25h−/− BMDMs at late times with murine cytomegalovirus infected BMDMs. These results confirm that alternative pathways or mechanisms exist, playing roles in the crosstalk between cholesterol metabolism and innate immune response. Collectively, this study characterises the role of HMGCR in the 25-HC associated IFN-mediated host defence against viral infection. Results indicate that, in addition to the IFN-mediated host response, alternative pathways or other mechanisms also result in the down-regulation of HMGCR during viral infection. HMGCR is at the crossroad of different pathways or mechanisms, and is therefore not only targeted by 25-HC. Hence, further questions can be addressed from these results: (1). What are the alternative pathways or mechanisms for the down-regulation of HMGCR? (2). How do these pathways or mechanisms work in hosts’ immune system? Answering these questions can contribute to refining the pathway map of innate immunity and understanding the precise role of HMGCR, or even the sterol biosynthesis pathway, in hosts’ immune response against pathogens.
6

Effect of murine cytomegalovirus infection on haematopoiesis and myeloid cell differentiation and function

Khong, Andrea January 2008 (has links)
Cytomegalovirus (CMV) is a ubiquitous pathogen affecting over 95% of the world’s population. While infection is typically asymptomatic in healthy individuals, the virus persists life-long in its host and can be reactivated following withdrawal of immune control. As such, it remains a serious clinical concern in individuals who are immunocompromised, such as newborns and neonates, transplant and/or chemotherapy recipients, and HIV/AIDS patients. CMV also has the ability to cause immunosuppression, the mechanisms of which include defective antigen presentation to T cells and interference with haematopoiesis in the bone marrow (BM). Due to strict species specificity, murine CMV (MCMV) provides a relevant model for the study of CMV modulation of the immune system in vivo in its natural host. The type I interferons (IFNs) represent a major family of cytokines involved in the early response to MCMV infection. Their anti-viral activity and regulation of NK cell activation and cytotoxicity are of significant interest in the context of MCMV infection, as genetic resistance to MCMV is mediated by the ability of Ly49H+ NK cells to directly recognise and lyse infected cells. Chapter 2 comprises an analysis of acute MCMV infection in the absence of type I IFN activity. These studies were conducted in IFNAR1 and IFNAR2 deficient mice, which lack components of the type I IFN receptor. Data obtained from these studies confirmed the essential requirement for type I IFN in controlling viral titres, promoting expansion of splenic Ly49H+ NK cells, and inducing early activation of NK cell cytotoxicity. In addition, our data depicted an accumulation of infected myeloid cells in the absence of effective NK cell-mediated control. This was paralleled by a significant increase in the level of serum TNF-a and IFN-¿, an effect which in some cases has been linked to serious pathological disease. Thus, the data described in this chapter provide an insight into the consequences arising from delayed NK cell responses to MCMV infection in the absence of type I IFN. vii Type I IFN can also potentially affect BM haematopoiesis. BM atrophy and impairment of myelopoiesis are serious consequences of CMV infection. During acute MCMV infection we consistently observed a profound loss of splenic dendritic cells (DCs) in BALB/c mice. Since all DC subsets are derived from BM haematopoietic progenitor cells, the possibility that MCMV might interfere with BM haematopoiesis and DC differentiation was explored. Chapters 3 and 4 describe the impact of acute MCMV infection on BM progenitors, with particular emphasis on the differentiation capabilities of these cells in ex vivo culture systems. Chapter 3 focuses on the effect of MCMV infection on BM cellularity and frequency of specific BM progenitor populations. A thorough analysis of contributing factors, such as viral infection of BM cells, involvement of type I and II IFNs, progenitor cell trafficking and NK cell activity in the BM compartment, was conducted. Our results showed that a severe loss of BM cellularity occurs in MCMV-infected mice. Furthermore, when BM cells from MCMV-infected mice were cultured ex vivo in granulocyte macrophage-colony stimulating factor (GM-CSF), there was an impairment in their ability to differentiate into DCs.
7

Etude de la différenciation et des fonctions des monocytes classiques au cours de l'infection par le cytomégalovirus murin / Study of classical monocytes differentiation and functions during murine cytomegalovirus infection

Fries, Anissa 29 September 2016 (has links)
Les monocytes classiques (cMo) sont des phagocytes mononucléés circulant dans le sang et capables de migrer vers les tissus enflammés pour s’y différencier en monocytes inflammatoires, cellules dendritiques dérivées de monocytes (MoDC), macrophages (MoM) ou cellules myéloïdes suppressives. Selon le contexte physiopathologique, les cellules dérivées de cMo peuvent être bénéfiques ou néfastes. Dans l’infection par le cytomégalovirus murin (MCMV) leur rôle est controversé. Les divergences apparentes dans la littérature pourraient s’expliquer par l’utilisation de souches distinctes de souris ou de virus, l’étude d’organes différents, et la confusion existante sur l’identité et la plasticité de différents sous-types de cellules dérivées de cMo. Par des analyses transcriptionnelles, morphologiques et fonctionnelles, mon travail de thèse montre que, dans la rate de souris infectées par MCMV, les cMo se différencient simultanément en monocytes inflammatoires, MoDC et MoM. Cette différenciation est abrogée lorsque les cMo sont incapables de répondre aux interférons de type I (IFN-I), massivement produits dans les infections virales, qui boostent l’immunité intrinsèque antivirale et promeuvent l’activation des cellules immunitaires innées et adaptatives. La déplétion des cMo compromet le contrôle de l’infection et les réponses des cellules Natural Killer et des lymphocytes T CD8+. Mon travail montre que, dans les souris infectées par MCMV, les cMo se différencient, de manière dépendante de l’IFN-I, en trois sous-types cellulaires distincts qui contribuent à la fois au contrôle de la réplication virale et à la promotion de réponses immunitaires innées et adaptatives protectrices. / Classical monocytes (cMo) are mononuclear phagocytes mainly localized in the blood at steady state. Upon inflammation cMo migrate into inflamed tissues where they can differentiate in inflammatory monocytes, monocyte-derived dendritic cells (MoDC), monocyte-derived macrophages (MoM) or myeloid derived suppressor cells (MDSC). Depending on the physiopathological context, cMo-derived cells can be beneficial or detrimental. There are major discrepancies between published reports on the role of cMo during MCMV infection. This may be due to the use of distinct strains of mice or of virus, to the study of different organs, or to the confusion existing in the field regarding the identity and the plasticity of the different types of cMo-derived cells. During my PhD, by combining gene expression profiling, morphological, phenotypical and functional studies, I have shown that splenic cMo in MCMV-infected mice encompass cells that had simultaneously differentiated in vivo into either inflammatory monocytes, MoDC or MoM. This cMo differentiation is abrogated in the absence of responsiveness to type I interferons (IFN-I), which are highly produced during viral infections and boosting cell-intrinsic anti-viral immunity as well as promoting the activation of innate and adaptive immune responses. cMo depletion compromises the control of MCMV replication and the antiviral responses of Natural Killer cells and CD8+ T lymphocytes. My PhD work demonstrates that, in MCMV-infected mice, cMo differentiate, via an IFN-I-dependent pathway, into three distinct cell subtypes that are involved both in the control of MCMV replication and in the induction of protective innate and adaptive immunity.
8

Etude de redondances mises en place par le système immunitaire pour lutter contre l'infection par le cytomégalovirus murin / Study of redundancies established by the immune system for the protection during murine cytomegalovirus infection

Cocita, Clément 21 October 2015 (has links)
Chez la souris, les cellules dendritiques plasmacytoïdes (pDC) et natural killer (NK) contribuent à la résistance contre les infections systémiques par les virus herpétiques tels que le cytomégalovirus murin (MCMV). Les pDC représentent la source majeure d’interférons de type I (IFN-I) lors d’une infection par le MCMV. Cette réponse est dépendante de MyD88 et des récepteurs de type Toll 7 et 9. D’autre part, les cellules NK, qui expriment le récepteur d’activation Ly49H, peuvent détecter et lyser les cellules infectées par le MCMV. La perte de l’une de ces réponses augmente la sensibilité à l’infection. Cependant, la façon dont ces réponses antivirales interagissent est mal connue. Chez l’homme, bien que les réponses dépendantes des IFN-I soient essentielles, MyD88 semble superflu pour l’immunité antivirale. Cependant, les mécanismes susceptibles de compenser l’absence de MyD88 chez l’homme sont inconnus. Il a été supposé que les souris déficientes pour MyD88 ne parvenaient pas à monter de réponse protectrice dépendante des IFN-I lors d’infections par le MCMV. Afin d’évaluer cela, nous avons comparé la résistance de souris déficientes pour MyD88, les récepteurs aux IFN-I (IFNAR) et/ou Ly49H lors de cette infection. La déplétion sélective des pDC ou l’absence de MyD88 diminue drastiquement la production d’IFN-I, mais n’empêche pas l’établissement d’une forte réponse aux IFN-I dans la rate. De plus, l’absence de MyD88, mais pas celle d’IFNAR, peut être compensée par l’activité antivirale des cellules NK dépendant de Ly49H. Par conséquent, chez la souris, MyD88 est redondant pour l’établissement d’une réponse splénique aux IFN-I lors d’une infection systémique par le MCMV. / In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses has been reported to increase susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 appears to be dispensable for antiviral immunity. However, the mechanisms that could compensate MyD88 deficiency in humans have not been elucidated. Moreover, it has been assumed, but not proven, that MyD88-deficient mice fail to mount protective IFN-I responses to systemic herpes virus infections. To address these issues, we compared resistance to MCMV infection between mouse strains deficient for MyD88, the IFN-I receptor (IFNAR) and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 drastically decreased production of IFN-I, but not the protective antiviral responses mediated by these cytokines. Moreover, MyD88, but not IFNAR, deficiency could be compensated by Ly49H mediated antiviral NK cell responses. Thus, contrary to the current dogma, but consistent with the situation in humans, we conclude that, in mice, MyD88 is redundant for splenic IFN-I responses against a systemic herpes virus infection.

Page generated in 0.0792 seconds