• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurophysiologie du contrôle moteur des muscles érecteurs du rachis : caractérisation des circuits de neurones

Desmons, Mikaël 10 August 2023 (has links)
Thèse ou mémoire avec insertion d'articles / Introduction : Les muscles du tronc participent au maintien de la posture, ils s'activent pour rigidifier et/ou mouvoir la colonne vertébrale. Il est possible de distinguer deux types de contrôle moteur pour ces derniers: un contrôle volontaire (e.g., extension du dos) et un contrôle postural pour conserver la posture (involontaire). Les patients souffrant d'états de santé tels que les accidents vasculaires cérébraux, les lésions de la moelle épinière et les lombalgies présentent des altérations du contrôle moteur du tronc. Ces altérations peuvent être dues à une lésion du système nerveux central (SNC) (e.g., accident vasculaire cérébral) ou à une réorganisation des circuits neuronaux (e.g., lombalgie) en présence de douleur. Bien que la lombalgie chronique soit à l'origine du plus grand nombre d'années vécues avec incapacité dans le monde, la neurophysiologie du contrôle moteur des muscles paravertébraux lombaires est méconnue. Par exemple, les études sondant les représentations des muscles paravertébraux lombaires avec la stimulation magnétique transcrânienne (TMS) chez l'humain se sont concentrées sur une seule région : le cortex moteur primaire (M1). Pourtant, d'autres circuits de neurones tels que l'aire motrice supplémentaire (SMA) semblent impliqués. Dépendamment de la direction du courant électrique utilisée (postéro-antérieur [PA] vs. antéro-postérieur [AP]), la TMS pourrait activer différents circuits de neurones qui pourraient être impliqués différemment dans le contrôle des muscles du tronc. Il a été suggéré que les circuits recrutés par le courant AP pourraient refléter l'action des structures prémotrices (prémoteur et SMA) sur le M1. L'objectif général de la thèse est d'explorer, à l'aide de techniques de neurophysiologie (TMS et réflexe d'étirement (SR)), le fonctionnement de différents circuits de neurones impliqués dans le contrôle moteur des muscles paravertébraux lombaires chez des individus en santé. Méthode : Une revue systématique de la littérature a été réalisée pour examiner systématiquement les études portant sur le contrôle neuronal des muscles paravertébraux lombaires chez l'homme testé par la TMS. Puis, la TMS a été utilisée dans deux études pour mesurer l'excitabilité corticospinale des muscles érecteurs du rachis lombaire (LES) chez des individus en santé. Dans l'étude 2, l'effet de différentes directions de courant de la TMS (PA- vs. AP-TMS) sur la mesure du contrôle corticomoteur des LES et sur la cartographie de la représentation corticale des LES ont été réalisé pendant une tâche statique de maintien postural. Dans l'étude 3, l'excitabilité des circuits de neurones PA- et AP-TMS ainsi que l'excitabilité spinale (SR) ont été testés lors de la préparation et de l'exécution de tâches posturale et volontaire des LES. Les potentiels moteurs évoqués (MEPs) et SR ont été mesurés à plusieurs intervalles de temps avant l'exécution d'une bascule du bassin (activation volontaire des LES) et d'une flexion bilatérale des épaules (activation posturale des LES). Résultats : Les résultats obtenus dans l'étude 1 suggèrent des projections bilatérales à partir de chaque M1 vers un muscle lombaire et la présence de circuits inhibiteurs et excitateurs intracorticaux dans M1. Dans l'étude 2, l'utilisation du courant AP-TMS a entraîné une latence de réponse plus tardive, une inhibition plus importante avec un protocole de stimulations pairées, et un seuil moteur plus élevé qu'avec le courant PA-TMS. Les résultats de l'étude 3 ont révélé (i) dans la tâche posturale, un changement de l'excitabilité corticospinale et motoneuronale plus élevé pendant l'exécution par rapport à la préparation motrice, quelle que soit la direction du courant et (ii) dans la tâche volontaire, une augmentation de l'excitabilité corticospinale pendant l'exécution par rapport à la préparation motrice uniquement avec le courant AP-TMS. Conclusion : Les connaissances des structures neuronales sous-jacentes du contrôle moteur des muscles paravertébraux lombaires sont influencées par les études menées en neurophysiologie sur le contrôle moteur des muscles distaux (e.g., main). Les résultats de la thèse supportent l'existence de différences entre le contrôle moteur des muscles paravertébraux lombaires et des muscles distaux, notamment par une plus grande contribution des voies descendantes bilatérales. De plus, les résultats soutiennent l'existence de deux circuits de neurones sous-jacents du contrôle moteur des LES recrutés par les courants PA- et AP-TMS. Ces circuits semblent contribuer différemment au contrôle moteur des LES dépendamment du type de tâche à réaliser (posturale ou volontaire) chez des individus en bonne santé. De futures études seront nécessaires pour explorer si ces circuits sont modulés différemment en présence de douleur expérimentale (e.g., stimulation électrique) et clinique (e.g., lombalgie). / Introduction: The muscles of the trunk are essential for maintaining posture, they are activated to stiffen and/or move the spine. Two types of motor control can be distinguished for them: voluntary control (e.g., back extension) and postural control during which the motor system is activated to maintain posture. Patients suffering from various health conditions such as stroke, spinal cord injury and low back pain show alterations in the trunk motor control. These alterations may be due to damage to the central nervous system (CNS) (e.g., stroke) or to a reorganisation of neural circuits (e.g., low back pain) in the presence of pain. Although chronic low back pain accounts for the largest number of years lived with disability in the world, the neurophysiology of motor control of the lumbar paraspinal muscles is poorly understood even in healthy individuals. For example, studies probing trunk muscle representations with transcranial magnetic stimulation (TMS) in humans have mainly focused on a single region: the primary motor cortex (M1). However, evidence suggests the major involvement of other neural circuits such as the supplementary motor area (SMA). Depending on the direction of the electrical current used (posterior-anterior [PA] vs. antero-posterior [AP]), TMS could activate different neural circuits that might be differently involved in trunk muscle control. It has been suggested that the circuits recruited by the AP current may reflect the action of premotor structures (premotor and SMA) on the M1. The general objective of the thesis is to explore, using neurophysiological techniques (TMS and stretch reflex (SR)), the functioning of different neural circuits involved in the motor control of lumbar paraspinal muscles in healthy individuals. Methods: A systematic review of the literature was conducted to systematically examine studies of the neural control of lumbar muscles in humans tested by TMS. Then, TMS was used in two studies to measure the corticospinal excitability of lumbar spinal erector spinae (LES) muscles. In Study 2, the effect of different TMS current directions (PA- vs. AP-TMS) on the measurement of corticomotor control of the LES muscles and on the mapping of the cortical representation of the LES muscles were performed during a static postural maintenance task in healthy individuals. In Study 3, the excitability of PA- and AP-TMS neural circuits as well as spinal excitability via the stretch reflex were tested during the preparation and execution of postural and voluntary LES muscle tasks. MEPs and SR were measured at several time intervals before the execution of a pelvic tilt (voluntary activation of the lumbar muscles) and a bilateral shoulder flexion (postural activation of the lumbar muscles). Results: The results obtained in Study 1 suggest bilateral projections from each M1 to a lumbar muscle and the presence of intracortical inhibitory and excitatory circuits in M1. In Study 2, the use of AP-TMS current resulted in a later response latency, greater inhibition with a paired pulses stimulation protocol, and a higher motor threshold than with PA-TMS current. The results of Study 3 revealed (i) in the postural task, a higher modulation of corticospinal and motoneuronal excitability during execution than during motor preparation, regardless of the direction of the current and (ii) in the voluntary task, a modulation of corticospinal excitability that was present only with the AP-TMS current. Conclusion: Knowledge of the neural structures underlying motor control of lumbar paraspinal muscles is greatly influenced by neurophysiological studies of motor control of distal muscles (e.g., hand). However, the results of the thesis support the existence of differences between the motor control of the lumbar paraspinal muscles and the distal muscles, notably through a greater contribution of bilateral descending pathways. Furthermore, the results support the existence of two underlying neuronal circuits of LES muscle motor control recruited by PA- and AP-TMS currents. These circuits also appear to contribute differently to LES motor control depending on the type of task being performed (postural or voluntary) in healthy individuals. Future studies are needed to explore whether these circuits are active differently in the presence of experimental (e.g., electrical stimulation) and clinical (e.g., low back pain) pain.
2

Contribution à l'étude de la potentialisation de post-activation et de ses implications fonctionnelles chez l'homme

Baudry, Stéphane January 2006 (has links)
Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
3

Etude de la spécificité de la commande motrice et de sa régulation pendant différents types de contractions musculaires

Pasquet, Benjamin 07 September 2009 (has links)
Le but de cette dissertation doctorale était de mieux comprendre les mécanismes de contrôle tant centraux que périphériques qui sont à l’origine de la régulation neuromusculaire lors de mouvement impliquant des contractions de type excentrique. Lors d’une première étude réalisée sur le muscle jambier antérieur, nous avons montré qu’un exercice utilisant des contractions excentriques présentait une meilleure résistance à la fatigue que lorsque des contractions concentriques étaient impliquées puisque celui-ci conduit à une moindre diminution du couple de force et de l’activité électromyographique. L’absence de fatigue nerveuse centrale et l’observation d’un comportement spécifique du couple de force et de l’activité électromyographique lors de ces épreuves de fatigue semblait traduire la mise en jeu de processus périphériques différents. La plus grande fatigue observée lors de l’épreuve concentrique suggérait une activation plus importante que pour l’épreuve excentrique, dont les conséquences métaboliques renforcent les altérations du couplage excitation-contraction. Dans un second temps, nous avons étudié l’effet des modifications de longueur de fascicule du muscle jambier antérieur sur le comportement spécifique des unités motrices (ordre, fréquence et seuil de recrutement) lors de contractions isométriques. Nous avons ensuite analysé le comportement d’unités motrices selon les différentes modalités de contractions (concentrique vs. excentrique) sur ce même muscle. Pour y répondre, différentes techniques d’analyse ont été utilisées dont l’enregistrement électromyographique intramusculaire et l’ultrasonographie. Enfin, nous avons cherché à analyser l’évolution des différents mécanismes de régulation d’origine périphérique et /ou central susceptible de modifier l’excitabilité du pool de motoneurone lors de contractions concentriques et excentriques. Pour y répondre, les modulations d’une part, du réflexe de Hoffmann (réflexe H) par stimulation électrique et d’autre part, celles du potentiel moteur évoqué (MEP) par stimulation magnétique transcorticale, ont été investiguées. Ces réponses ont été enregistrées à différents angles de la plage articulaires étudiée lors des contractions concentriques et excentriques, ainsi qu’aux deux extrémités angulaires lors de contraction isométriques. Notre travail indique que l’ordre de recrutement des unités motrices entre les contractions concentriques et excentriques étant identique, le système nerveux n’utilise qu’une seule et même stratégie d’activation liée à la taille des motoneurones impliqués dans ces deux types de contractions. En outre, les contractions excentriques lorsqu’elles sont réalisées à vitesse constante, sont associées à une modulation spécifique de la fréquence de décharge des unités motrices. Ce comportement diffère de celui observé lors de contractions concentriques, malgré une modification linéaire et similaire de la longueur des fascicules et du couple de force au cours de ces deux tâches. Les modulations du recrutement des unités motrices semblent davantage dépendre de la longueur musculaire tandis que les modulations de fréquence prédominent pendant les contractions en raccourcissement. Ce comportement spécifique semble dépendant de mécanismes de régulation principalement localisés au niveau spinal. Ainsi, le degré d’inhibition des afférences fusoriales affectant le pool de motoneurones du muscle tibial antérieur lors de sollicitations actives du muscle, dépend davantage de l’angle articulaire et donc de la longueur du muscle plutôt que du mode de contraction. Lors de sollicitations isométriques, le retour sensoriel Ia est principalement contrôlé au niveau présynaptique en fonction de la longueur du muscle. Lors de sollicitations concentriques et excentriques, ces mécanismes présynaptiques réguleraient l'excitabilité spinale de manière similaire entre les deux modes. Néanmoins, bien que l'inhibition présynaptique soit probablement plus marquée lors des sollicitations excentriques, ce mode de contraction semble également régulé par des mécanismes d'inhibition intervenant au niveau postsynaptique tel que l'inhibition récurrente de Renshaw. Ce mécanisme localisé au niveau postsynaptique permettrait de réguler la fréquence de pulsation des unités motrices lors de sollicitations excentriques dans le but le faciliter l'exécution du mouvement. L'originalité de notre travail a été d’étudier le comportement d’une même unité dans les deux modes de contractions alors que la méthode d’analyse généralement adoptée consistait à comparer des populations d’unités motrices entre-elles. De plus, les changements de la longueur du muscle au cours du mouvement ainsi que les vitesses de raccourcissement ou d'allongement ont été estimés à partir de la mesure directe de la longueur des fascicules musculaires. Cette dernière présente l’avantage de fournir une information de longueur et de vitesse sur la portion de muscle à partir de laquelle les enregistrements d’unités motrices ont été obtenus. Enfin, étant donné les modulations possibles tant au niveau spinal que supraspinal des mécanismes nerveux mis en jeu, il semblait important d’analyser celles-ci pendant le mouvement et aux différents angles investigués. Cette précision méthodologique a permis d'élargir la discussion concernant les possibles modifications de la balance "excitation-inhibition" lors de sollicitations excentriques, qui, jusqu’à présent, n'avaient été analysées que pour un angle articulaire donné. / Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished

Page generated in 0.1696 seconds