Spelling suggestions: "subject:"musculosquelettique"" "subject:"musculosquelettiques""
21 |
Modélisation et analyses cinématiques de l'épaule lors de levers de charges en hauteurDesmoulins, Landry 10 1900 (has links)
Thèse de doctorat à mi-chemin entre la recherche fondamentale et appliquée. Les champs disciplinaires sont principalement la biomécanique, l'ergonomie physique ou encore l'anatomie. Réalisé en cotutelle avec le professeur Paul Allard et Mickael Begon. / An occupation that requires handling loads combined with large elevation of the arms is associated with the occurrence of shoulders musculoskeletal disorder. The analysis of these joint movements is essential because it helps to quantify the stress applied to the musculoskeletal structures. This thesis provides an innovative model which allows the estimation of the shoulder complex kinematics and used it to analyze the joints kinematics during lifting tasks. It is organized into three sub-objectives.
The first aim is the development and validation of a kinematic model the most representative as possible of the shoulder complex anatomy while correcting soft tissue artifacts through the use of global optimization. This model included a scapulothoracic closed loop, which constrains a scapular dot contact to be coincident with thoracic gliding plane modeled by a subject-specific ellipsoid. In the validation process, the reference model used the gold standard for direct measurements of bone movements. In dynamic movements, the closed loop model developed generates barely more kinematic errors that errors obtained for the study of standard movements by existing models.
The second aim is to detect and quantify the shoulder articular movements influenced by the combined effects of two risk factors: task height and load weight. The results indicate that many peaks of joint angles are influenced by the interaction of height and weight. According to the different initial and deposits heights when the weight increases, the kinematics changes are substantial, in number and magnitude. The kinematic strategies of participants are more consistent when the weight of load increase for initial height lift at hips level compared to shoulders level, and for a deposit at eye level compared to shoulders.
The third aim is to investigate the magnitude and temporality of the maximum peak vertical acceleration of the box. The significant joints movements are characterized with a principal component analysis of joint angle values collected at this instant. In particular, this study highlights that elbow flexion and thoraco-humeral elevation are two correlated invariant joint movements to all lifting tasks whatever the initial and deposit height, and weight of the load.
The realism of the developed shoulder model and kinematics analyzes open perspectives in occupational biomechanics and contribute to risk prevention efforts in health and safety. / Une activité professionnelle qui exige de manipuler des charges combinée à de grandes élévations des bras augmente les chances de développer un trouble musculo-squelettique aux épaules. L’analyse de ces mouvements articulaires est essentielle car elle contribue à quantifier les contraintes appliquées aux structures musculo-squelettiques. Cette thèse propose un modèle innovant qui permet l’estimation de la cinématique du complexe de l’épaule, et l’utilise ensuite afin d’analyser la cinématique de levers de charge. Elle s’organise en trois sous-objectifs.
Le premier concerne le développement et la validation d’un modèle cinématique le plus représentatif possible de l’anatomie du complexe de l’épaule tout en corrigeant les artéfacts des tissus mous par une optimisation multi-segmentaire. Ce modèle avec une fermeture de boucle scapulo-thoracique, impose à un point de contact scapulaire d’être coïncident au plan de glissement thoracique modélisé par un ellipsoïde mis à l’échelle pour chaque sujet. Le modèle qui a été utilisé comme référence lors des comparaisons du processus de validation bénéficie du « gold standard » de mesures directes des mouvements osseux. Le modèle développé en boucle fermée génère à peine plus d’erreurs cinématiques lors de mouvements dynamiques que les erreurs obtenues par les modèles existants pour l’étude de mouvements standards.
Le second identifie et quantifie les mouvements articulaires de l’épaule influencés par la combinaison des effets de deux facteurs de risques : les hauteurs importantes d’agencement de la tâche (hauteurs de saisie et de dépôt) et les masses de charges (6 kg, 12 kg et 18 kg). Les résultats indiquent qu’il existe de nombreux pics d’angles articulaires qui sont influencés par l’interaction des deux effets. Lorsque la masse augmente, les modifications cinématiques sont plus importantes, en nombre et en amplitude, selon les différentes hauteurs de saisies et de dépôts de la charge. Les participants varient peu leur mode opératoire pour une saisie à hauteur des hanches en comparaison des épaules, et pour un dépôt à hauteur des yeux en comparaison aux épaules avec une charge plus lourde.
Un troisième s’intéresse au pic maximal d’accélération verticale de la charge dans son intensité et sa temporalité. Basée sur une analyse en composante principale des valeurs d’angles articulaires à cet instant, elle permet de caractériser les mouvements articulaires significatifs. Cette étude met notamment en évidence que la flexion du coude et l’élévation thoraco-humérale sont deux mouvements articulaires corrélés invariants à toutes les tâches de lever en hauteur quelles que soient la hauteur de dépôt et la masse de la charge.
Le souci de réalisme du modèle développé et les analyses cinématiques menées ouvrent des perspectives en biomécanique occupationnelle et participent à l’effort de prévention des risques en santé et sécurité.
|
22 |
Estimation des forces musculaires du membre supérieur humain par optimisation dynamique en utilisant une méthode directe de tir multipleBélaise, Colombe 07 1900 (has links)
No description available.
|
23 |
Modeling of the sEMG / Force relationship by data analysis of high resolution sensor network / Modélisation de la relation entre le signal EMG de surface et la force musculaire par analyse de données d’un réseau de capteurs à haute résolutionAl Harrach, Mariam 27 September 2016 (has links)
Les systèmes neuromusculaires et musculo-squelettique sont considérés comme un système de systèmes complexe. En effet, le mouvement du corps humain est contrôlé par le système nerveux central par l'activation des cellules musculaires squelettiques. L'activation du muscle produit deux phénomènes différents : mécanique et électrique. Ces deux activités possèdent des propriétés différentes, mais l'activité mécanique ne peut avoir lieu sans l'activité électrique et réciproquement. L'activité mécanique de la contraction du muscle squelettique est responsable du mouvement. Le mouvement étant primordial pour la vie humaine, il est crucial de comprendre son fonctionnement et sa génération qui pourront aider à détecter des déficiences dans les systèmes neuromusculaire et musculo-squelettique. Ce mouvement est décrit par les forces musculaires et les moments agissant sur une articulation particulière. En conséquence, les systèmes neuromusculaires et musculo-squelettique peuvent être évalués avec le diagnostic et le management des maladies neurologiques et orthopédiques à travers l'estimation de la force. Néanmoins, la force produite par un seul muscle ne peut être mesurée que par une technique très invasive. C'est pour cela, que l'estimation de cette force reste l'un des grands challenges de la biomécanique. De plus, comme dit précédemment, l'activation musculaire possède aussi une réponse électrique qui est corrélée à la réponse mécanique. Cette résultante électrique est appelée l'électromyogramme (EMG) et peut être mesurée d'une façon non invasive à l'aide d'électrodes de surface. L'EMG est la somme des trains de potentiel d'action d'unité motrice qui sont responsable de la contraction musculaire et de la génération du mouvement. Ce signal électrique peut être mesuré par des électrodes à la surface de la peau et est appelé I'EMG de surface {sEMG). Pour un muscle unique, en supposant que la relation entre l'amplitude du sEMG et la force est monotone, plusieurs études ont essayé d'estimer cette force en développant des modèles actionnés par ce signal. Toutefois, ces modèles contiennent plusieurs limites à cause des hypothèses irréalistes par rapport à l'activation neurale. Dans cette thèse, nous proposons un nouveau modèle de relation sEMG/force en intégrant ce qu'on appelle le sEMG haute définition (HD-sEMG), qui est une nouvelle technique d'enregistrement des signaux sEMG ayant démontré une meilleure estimation de la force en surmontant le problème de la position de l'électrode sur le muscle. Ce modèle de relation sEMG/force sera développé dans un contexte sans fatigue pour des contractions isométriques, isotoniques et anisotoniques du Biceps Brachii (BB) lors une flexion isométrique de l'articulation du coude à 90°. / The neuromuscular and musculoskeletal systems are complex System of Systems (SoS) that perfectly interact to provide motion. This interaction is illustrated by the muscular force, generated by muscle activation driven by the Central Nervous System (CNS) which pilots joint motion. The knowledge of the force level is highly important in biomechanical and clinical applications. However, the recording of the force produced by a unique muscle is impossible using noninvasive procedures. Therefore, it is necessary to develop a way to estimate it. The muscle activation also generates another electric phenomenon, measured at the skin using electrodes, namely the surface electromyogram (sEMG). ln the biomechanics literature, several models of the sEMG/force relationship are provided. They are principally used to command musculoskeletal models. However, these models suffer from several important limitations such lacks of physiological realism, personalization, and representability when using single sEMG channel input. ln this work, we propose to construct a model of the sEMG/force relationship for the Biceps Brachii (BB) based on the data analysis of a High Density sEMG (HD-sEMG) sensor network. For this purpose, we first have to prepare the data for the processing stage by denoising the sEMG signals and removing the parasite signals. Therefore, we propose a HD-sEMG denoising procedure based on Canonical Correlation Analysis (CCA) that removes two types of noise that degrade the sEMG signals and a source separation method that combines CCA and image segmentation in order to separate the electrical activities of the BB and the Brachialis (BR). Second, we have to extract the information from an 8 X 8 HD-sEMG electrode grid in order to form the input of the sEMG/force model Thusly, we investigated different parameters that describe muscle activation and can affect the relationship shape then we applied data fusion through an image segmentation algorithm. Finally, we proposed a new HDsEMG/force relationship, using simulated data from a realistic HD-sEMG generation model of the BB and a Twitch based model to estimate a specific force profile corresponding to a specific sEMG sensor network and muscle configuration. Then, we tested this new relationship in force estimation using both machine learning and analytical approaches. This study is motivated by the impossibility of obtaining the intrinsic force from one muscle in experimentation.
|
Page generated in 0.0389 seconds