• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNA topoisomerases, 4-quinolones, and antibiotic resistance

Zhao, Xilin January 2002 (has links)
No description available.
2

The mutant-prevention concentration concept and its application to <i>Staphylococcus aureus</i>

Metzler, Kelli Leigh 17 June 2004
<i>Staphylococcus aureus</i> is a ubiquitous organism causing world-wide morbidity and mortality. This species readily develops resistance to antimicrobial agents. Current dosing strategies are based, in part, on minimum inhibitory concentrations (MICs). This susceptibility test fails to detect the presence of first-step resistant mutants often present in large heterogeneous populations of infecting bacteria. Dosing strategies based on MIC results may, in fact, allow for the selective proliferation of resistant subpopulations. The mutant-prevention concentration (MPC) is the drug concentration at which all first-step resistant mutants will be eradicated along with the susceptible cells. Determination of the mutant-selection window (MSW) is possible using MIC and MPC data. When considered together with achievable drug concentrations in human bodily sites, the MSW helps determine which antimicrobials are likely to select for resistance. MIC and MPC testing on clinical isolates of methicillin-susceptible (MSSA) and -resistant (MRSA) S. aureus was performed. Characterization via the polymerase chain reaction, sequencing, and electron microscopy (EM) was done on selected organisms recovered from MPC studies (MPC-recovered). MIC and MPC testing was performed on organisms isolated sequentially from patients with recurring S. aureus infections. Pulsed field gel electrophoresis was performed on these sequential isolates. Based on the MIC and the MPC values, the most potent agents for systemic MSSA and MRSA infections are gemifloxacin and vancomycin, respectively. Re-testing MPC-recovered populations by the MIC showed increased MIC results compared to the parent populations. Macrolide-resistance genes were discovered in S. aureus MPC-recovered populations; in contrast, parental isolates lacked these resistance determinants. EM revealed an increase in cell wall thickness of a vancomycin MPC-recovered population compared to its parental population. Moxifloxacin and vancomycin had the lowest and narrowest MSWs for systemic MSSA and MRSA infections, respectively, compared to the other agents tested. Sequential isolates showed no change in MIC and MPC values. The data presented provides evidence for the application of the MPC test to S. aureus organisms. The MPC data is significant when determining appropriate dosing strategies aimed at preventing resistance.
3

The mutant-prevention concentration concept and its application to <i>Staphylococcus aureus</i>

Metzler, Kelli Leigh 17 June 2004 (has links)
<i>Staphylococcus aureus</i> is a ubiquitous organism causing world-wide morbidity and mortality. This species readily develops resistance to antimicrobial agents. Current dosing strategies are based, in part, on minimum inhibitory concentrations (MICs). This susceptibility test fails to detect the presence of first-step resistant mutants often present in large heterogeneous populations of infecting bacteria. Dosing strategies based on MIC results may, in fact, allow for the selective proliferation of resistant subpopulations. The mutant-prevention concentration (MPC) is the drug concentration at which all first-step resistant mutants will be eradicated along with the susceptible cells. Determination of the mutant-selection window (MSW) is possible using MIC and MPC data. When considered together with achievable drug concentrations in human bodily sites, the MSW helps determine which antimicrobials are likely to select for resistance. MIC and MPC testing on clinical isolates of methicillin-susceptible (MSSA) and -resistant (MRSA) S. aureus was performed. Characterization via the polymerase chain reaction, sequencing, and electron microscopy (EM) was done on selected organisms recovered from MPC studies (MPC-recovered). MIC and MPC testing was performed on organisms isolated sequentially from patients with recurring S. aureus infections. Pulsed field gel electrophoresis was performed on these sequential isolates. Based on the MIC and the MPC values, the most potent agents for systemic MSSA and MRSA infections are gemifloxacin and vancomycin, respectively. Re-testing MPC-recovered populations by the MIC showed increased MIC results compared to the parent populations. Macrolide-resistance genes were discovered in S. aureus MPC-recovered populations; in contrast, parental isolates lacked these resistance determinants. EM revealed an increase in cell wall thickness of a vancomycin MPC-recovered population compared to its parental population. Moxifloxacin and vancomycin had the lowest and narrowest MSWs for systemic MSSA and MRSA infections, respectively, compared to the other agents tested. Sequential isolates showed no change in MIC and MPC values. The data presented provides evidence for the application of the MPC test to S. aureus organisms. The MPC data is significant when determining appropriate dosing strategies aimed at preventing resistance.

Page generated in 0.1153 seconds