Spelling suggestions: "subject:"mycobacterium smegmatis -"" "subject:"nycobacterium smegmatis -""
41 |
Role of undecaprenyl phosphokinase in mycobacteriaRöse, Lars 12 July 2004 (has links)
Die Familie der Mykobakterien setzt sich aus pathogenen und apathogenen Vertretern zusammen. In dieser Arbeit wurden 3 Mitglieder dieser Familie für Untersuchungen herangezogen: ihr prominentester pathogener Vertreter Mycobacterium tuberculosis, der Erreger der Tuberkulose, das als Impfstoff eingesetzte Mycobacterium bovis BCG, das durch Attenuierung aus dem Rindertuberkulose-Erreger Mycobacterium bovis hervorging und das apathogene Bodenbakterium Mycobacterium smegmatis. Ein Schlüssel zum Verständnis der Mykobakterien und speziell ihrer Widerstandsfähigkeit ist die Kenntnis ihrer komplexen Zellwand. Peptidoglycan als deren Bestandteil und insbesondere der mittels Undecaprenyl-Monophosphat bewerkstelligte Transport von Peptidoglycan-Vorläufern aus dem Cytoplasma an die Zelloberfläche steht dabei im Zentrum der Zellwandbildung. In M. tuberculosis, M. bovis BCG und M. smegmatis wurden Deletionsmutanten für die Undecaprenyl-Phosphokinase (Upk) hergestellt. Für M. smegmatis wurde gezeigt, daß die delta upk Deletionsmutante, in Übereinstimmung mit Deletionsmutanten homologer Gene in anderen Bakterien, eine erhöhte Sensitivität gegenüber dem die Zellwandsynthese hemmenden Antibiotikum Bacitracin aufwies. Überraschenderweise zeigte M. tuberculosis delta upk diesen Phänotyp nicht. Weiterhin ließ sich für M. smegmatis delta upk im Vergleich zum M. smegmatis Wildtyp Peptidoglycan an der Zelloberfläche in geringerem Maße nachweisen. Eindrucksvoll zeigte sich die Bedeutung der Undecaprenyl Phosphokinase in der gestörten Entwicklung von Biofilmen im Falle der M. smegmatis delta upk Mutante. Dies galt sowohl für in vitro Bedingungen als auch für ein, im Rahmen dieser Arbeit, neu entwickeltes in vivo Modell. Vergleiche von M. tuberculosis Wildtyp und M. tuberculosis Mutante auf der Ebene von Proteom- und Transkriptom-Analysen führten zur Identifikation eines zum mykobakteriellen Fettsäure-Synthese II (FASII) System gehörenden Operons, das im Falle der upk-Deletion verstärkt exprimiert wurde und damit möglicherweise einen Kompensationsmechanismus für die fehlende Phosphokinase darstellt. Eine reduzierte Persistenz von M. smegmatis delta upk in infizierten Makrophagen legte nahe, daß Upk bei mykobakteriellen Infektionen eine entscheidende Rolle für das Überleben der Bakterien und ihre Virulenz spielt. Dies konnte erstmals für M. tuberculosis im Rahmen von Maus-Infektionsversuchen gezeigt werden. M. tuberculosis delta upk ließ sich als neues Mitglied in eine Reihe von als growth in vivo (giv) klassifizierten Mutanten einreihen. Die Herstellung von Deletionsmutanten wird als Möglichkeit betrachtet, verbesserte Impfstoffe herzustellen. Die physiologische Konsequenz der Deletion sollte bestenfalls neben einer Attenuierung des Ausgangsbakteriums (gilt besonders für M. tuberculosis) eine Überexpression protektionsrelevanter Antigene zur Folge haben. Im Vergleich zum bestehenden Impfstoff M. bovis BCG führte die Impfung von Mäusen mit M. bovis BCG delta upk sowohl zu geringerer bakterieller im Anschluß an die Vakzinierung als auch zu einer verbesserten Langzeit-Protektion gegen Tuberkulose. / The family of mycobacteria is composed of pathogenic and apathogenic bacteria. This study was performed with 3 members of this family, the most prominent pathogenic member, Mycobacterium tuberculosis, the causative agent of tuberculosis, the vaccine strain Mycobacterium bovis BCG which was developed by attenuation of the bovine tuberculosis agent Mycobacterium bovis, and Mycobacterium smegmatis which is apathogenic and widely distributed in soil. A key to understanding mycobacteria and, especially, their resistance is to understand the complexity of their cell wall. Peptidoglycan is a major component of the cell wall and the transport of peptidoglycan precursors out of the cytoplasm to the bacterial surface by undecaprenyl monophosphate is central to cell wall synthesis. Therefore, deletion mutants of the undecaprenyl phosphokinase gene (upk) were generated in M. tuberculosis, M. bovis BCG, and M. smegmatis. In the case of M. smegmatis it was shown that a delta upk deletion mutant, as with deletion mutants of homologous genes in other bacteria, exhibited an increased sensitivity to the antibiotic bacitracin, indicating that cell wall synthesis was hampered. Surprisingly, M. tuberculosis delta upk did not exhibit this phenotype. Furthermore, a lower level of peptidoglycan was detected on the cell surface of an M. smegmatis delta upk mutant compared to M. smegmatis wildtype. Relevance of the undecaprenyl phosphokinase was demonstrated by impaired biofilm development in the case of the M. smegmatis delta upk mutant. This was observed in vitro as well as in vivo using an animal model which was newly developed in this thesis. A fatty acid synthase II (FASII) system related operon revealed by comparative proteome- and transcriptome-analyses comparing M. tuberculosis wildtype and M. tuberculosis delta upk mutant, and may reflect a compensatory mechanism for the loss of upk. Reduced persistence of M. smegmatis in infected macrophages suggested a decisive role of Upk in mycobacterial infection concerning survival and virulence of bacteria. This was later demonstrated to be true for M. tuberculosis in a mouse model. M. tuberculosis delta upk was, therefore, classified as a new member of the group of growth in vivo (giv) mutants. Construction of deletion mutants is a strategy to identify improved vaccines. Ideally, the physiologic consequences of a gene deletion would result in attenuation of the modified bacterium (especially in the case of M. tuberculosis) and overexpression of antigens relevant for protection. Compared to the existing vaccine M. bovis BCG, vaccination of mice with M. bovis BCG delta upk exhibited a lower bacterial load upon vaccination as well as an improved long-lasting protection against M. tuberculosis infection.
|
42 |
Elucidating the Role of MsRbpA in Rifampicin Tolerance and Transcription Regulation of Mycobacterium SmegmatisVerma, Amit Kumar January 2013 (has links) (PDF)
RNA polymerase binding protein A (RbpA) was first discovered as a RNA polymerase binding protein from Streptomyces. coelicolor. It was shown to cause rifampicin tolerance to RNA polymerase in vitro and leads to basal level of rifampicin resistance in vivo. This protein is exclusively present in the actinobacteria family with the nearest neighbour in mycobacteria. When null mutant of RbpA in S. coelicolor were transformed with the rbpA gene from Mycobacterium tuberculosis the resistance level of rifampicin increased from 0.75 µgml-1 to 2 µg ml-1 suggesting analogous role of MtbRbpA (RbpA from M. tuberculosis). MsRbpA, RbpA from Mycobacterium smegmatis was found to interact with the β-subunit of RNAP and its binding location on M. smegmatis RNAP was shown to be 18 Å from the (i+1) site. MsRbpA was also shown to rescue the inhibitory effect of rifampicin in vitro. Furthermore, overexpression of MsRbpA in wild type M. smegmatis resulted in the increase in the MIC of rifampicin to 85 µg ml-1 from 20 µg ml-1, which is the MIC of rifampicin for the wild type M. smegmatis. On the other hand, MsRbpA was unable to augment transcription in the presence of rifampicin when the reaction was catalysed by rifampicin resistant RNAP. Recent reports have shown that MtbRbpA enhances the affinity σA to core RNAP thereby activates transcription. The N and C-termini of MtbRbpA interact with σA while the C-terminal region of MtbRbpA is required for the oligomerisation of MtbRbpA. However M. tuberculosis and S. coleicolor are part of same family actinobacteria, RbpA is essential for the former while it is dispensable in the later case.This work focuses on characterisation of rifampicin resistant RNAP from M. smegmatis and elaborates on the roles played by MsRbpA. These include its effect on transcription activation, transcription rescue, its role in RNAP promoter closed and open complex formation, characterisation of its site of interaction with RNAP and σA, finding critical functional residues and establishing the essentiality of MsRbpA in M. smegmatis.
Chapter 1 deals with the literature survey on structure of bacterial RNAP, promoters, sigma factors, RNAP inhibitors, transcriptional activators with the emphasis on the Mycobacteria.
Chapter 2 summarises the identification of the mutations in rpoB gene from the rifampicin resistant (RifR) mutant strains of M. smegmatis, purification of RNAP from these strain, determining IC50 values of these RifR RNAP for rifampicin, finding kinetic parameters for the interaction of RifR RNAP with 3-formyl rifampicin and evaluating their interaction with MsRbpA.
Chapter 3 describes the function of MsRbpA in transcription initiation, particularly its role in RNAP-promoter closed and open complex formation. Furthermore, this chapter throws light on the role of MsRbpA in transcription activation vis a vis its effects on transcription rescue from the inhibitory effect of rifampicin.
Chapter 4 elucidates the function of a segment of MsRbpA from Arg58 to Lys 73 in activation of transcription activity, transcription rescue from the inhibitory effect of rifampicin and its interaction with σA and core RNAP. Furthermore, the alanine scanning of the region and subsequent in vitro transcription studies revealed four important residues required for MsRbpA functions.
Chapter 5 describes the generation of conditional knock down strain of MsRbpA in M. smegmatis and establishing its essentiality.
Chapter 6 summarizes the work documented in the thesis.
|
43 |
Expanding The Horizon Of Mycobacterial Stress Response : Discovery Of A Second (P)PPGPP Synthetase In Mycobacterium SmegmatisMurdeshwar, Maya S 09 1900 (has links) (PDF)
The stringent response is a highly conserved physiological response mounted by bacteria under stress (Ojha and Chatterji, 2001; Magnusson et al., 2005; Srivatsan and Wang, 2007; Potrykus and Cashel, 2008). Until recently, the only known players in this pathway were the (p)ppGpp synthesizing and hydrolyzing long RSH enzymes (Mittenhuber, 2001; Atkinson et al., 2011) - RelA and SpoT in Gram negative bacteria and the bifunctional Rel in Gram positive bacteria including mycobacteria. The existence of Short Alarmone Synthetases (SAS) (Lemos et al., 2007, Nanamiya et al., 2008; Das et al., 2009; Atkinson et al., 2011) and Short Alarmone Hydrolases (SAH) (Sun et al., 2010, Atkinson et al., 2011), small proteins possessing a single functional (p)ppGpp synthetase or hydrolase domain respectively, is a recent discovery that has modified this paradigm. Around the same time that the presence of the SAS proteins was reported, we chanced upon such small (p)ppGpp synthetases in the genus Mycobacterium. The stringent response in the soil saprophyte Mycobacterium smegmatis was first reported by Ojha and co-workers (Ojha et al., 2000), and the bifunctional RSH, RelMsm, responsible for mounting the stringent response in this bacterium, has been characterized in detail (Jain et al., 2006 and 2007). RelMsm was the only known RSH enzyme present in M. smegmatis, and consequently, a strain of M. smegmatis deleted for the relMsm gene (ΔrelMsm) (Mathew et al., 2004), was expected to show a null phenotype for (p)ppGpp production. In this body of work, we report the surprising observation that the M. smegmatis ΔrelMsm strain is capable of synthesizing (p)ppGpp in vivo. This unexpected turn of events led us to the discovery of a second (p)ppGpp synthetase in this bacterium. The novel protein was found to possess two functional domains – an RNase HII domain at the amino-terminus, and a (p)ppGpp synthetase or RSD domain at the carboxy-terminus. We have therefore named this protein ‘MS_RHII-RSD’, indicating the two activities present and identifying the organism from which it is isolated. Orthologs of this novel SAS protein occur in other species of mycobacteria, both pathogenic and non-pathogenic. In this study, we report the cloning, purification and in-depth functional characterization of MS_RHII-RSD, and speculate on its in vivo role in M. smegmatis.
Chapter 1 reviews the available literature in the field of stringent response research and lays the background to this study. A historical perspective is provided,
starting with the discovery of the stringent response in bacteria in the early 1960s, highlighting the development in this area till date. The roles played by the long and short RSH enzymes, ‘Magic Spot’ (p)ppGpp, the RNA polymerase enzyme complex, and a few other RNA and proteins are described, briefly outlining the inferences drawn from recent global gene expression and proteomics studies. The chapter concludes with a description of the motivation behind, and the scope of the present study.
Chapter 2 discusses the in vivo and in silico identification of MS_RHII-RSD in M. smegmatis. Experiments performed for the genotypic and phenotypic revalidation of M. smegmatis ΔrelMsm strain are described. Detailed bioinformatics analyses are provided for the in silico characterization of MS_RHII-RSD in terms of its domain architecture, in vivo localization, and protein structure prediction. A comprehensive list of the mycobacterial orthologs of MS_RHII-RSD from a few representative species of infectious and non-infectious mycobacteria is included.
Chapter 3 summarizes the materials and methods used in the cloning, purification, and the biophysical and biochemical characterization of full length MS_RHII-RSD and its two domain variants – RHII and RSD, respectively. A detailed description of the purification protocols highlighting the specific modifications and changes made is given. Peptide mass fingerprinting to confirm protein identity, as well as preliminary mass spectrometric, chromatographic, and circular dichroism-based characterization of the proteins under study is also provided.
Chapter 4 deals in detail with the in vivo and in vitro functional characterization of the RNase HII and (p)ppGpp synthesis activities of full length MS_RHII-RSD and its two domain variants - RHII and RSD, respectively. The RNase HII activity is characterized in vivo on the basis of a complementation assay in an E. coli strain deleted for the RNase H genes; while in vitro characterization is done by performing a FRET-based assay to monitor the degradation of a RNA•DNA hybrid substrate in vitro. The (p)ppGpp synthesis activity is characterized in terms of the substrate specificity, magnesium ion utilization, and a detailed analysis of the kinetic parameters involved. A comparison of the (p)ppGpp synthesis activity of MS_RHII-RSD vis-à-vis that of the classical RSH protein, RelMsm, is also provided. Inferences drawn from (p)ppGpp hydrolysis assays and the in vivo expression profile of MS_RHII-RSD in M. smegmatis wild type and ΔrelMsm strains are discussed. Based on the results of these functional assays, a model is proposed suggesting the probable in vivo role played by MS_RHII-RSD in M. smegmatis.
Chapter 5 describes the attempts at generating MS_RHII-RSD overexpression and knockout strains in M. smegmatis, using pJAM2-based mycobacterial expression system, and mycobacteriophage-based specialized transduction strategy, respectively. The detailed methodology and the principle behind the techniques used are explained. The results obtained so far, and the future work and strain characterization to be carried out in this respect are discussed.
Chapter 6 takes a slightly different route and summarizes the work carried out in characterizing the glycopeptidolipids (GPLs) from M. smegmatis biofilm cultures. A general introduction about the mycobacterial cell wall components, with special emphasis on GPLs, is provided. The detailed protocols for chemical composition and chromatographic analyses are mentioned, and the future scope of this work is discussed.
Appendix-1 briefly revisits the preliminary studies performed to determine the pppGpp binding site on M. smegmatis RNA polymerase using a mass spectrometry-based approach. Appendices-2, 3, 4 and 5 give a comprehensive list of the bacterial strains; PCR primers; antibiotics, buffers and media used; and the plasmid and phasmid maps, respectively.
|
44 |
The Dynamics of Iron in Miniferritins : A Structure-Function ConnectionWilliams, Sunanda Margrett January 2014 (has links) (PDF)
The DNA binding proteins under starvation (Dps) from M. smegmatis are cage-like structures which internalize iron and bind DNA. They provide resistance to the cells from free radical damage, and physically protect the DNA from the harmful effects of reactive oxygen species by DNA compaction. The work compiled in this thesis has been an effort to study oligomerization and dynamics of iron metabolism by these nano-protein compartments.
Chapter 1 gives a general introduction on stress, especially oxidative stress, and the ways
bacteria fight back the host resistance systems. This has been elaborated from the point of view of the Dps proteins which is the focus of our work. Also, the competition for iron among the host and pathogens, and the modes of iron trafficking of the pathogens from host organisms has been
summarized. Finally, the structural aspects of ferritin family proteins to which Dps belongs, has been discussed.
Chapter 2 elaborates on the oligomerization pathways of the first M. smegmatis Dps MsDps1,
which exists in vitro as two oligomeric forms. The GFP-tagging has been used to locate the Dps1
proteins by live cell imaging and the over-expression of these proteins during nutrient limiting
conditions has been studied. The crystal structure of a point mutant F47E in the background of
MsDps1, which shows no dodecamerization in vitro, has been solved. The possible ways of
dodecamerization of MsDps1 has been concluded by analyzing the intermediates via glutaraldehyde cross-linking and native electrospray mass spectrometry.
Chapter 3 documents the gating machinery of iron in MsDps2 protein, the second M. smegmatis Dps protein. Through graph theoretical approaches, a tight histidine-aspartate cluster was identified at the ferritin-like trimeric pore which harbors the channel for the entry and exit of iron. Sitespecific variants of MsDps2 were generated to disrupt this ionic knot, and the mutants were further assayed for ferroxidation, iron uptake and iron release properties. Our studies in MsDps2 show the importance of counter-acting positive and negatively charged residues for efficient assimilation and dispersion of iron.
Chapter 4 describes crystallization studies of MsDps2 pore variants, done in an attempt to
connect the changes in functional properties described in chapter 3, with structural alterations of the point mutants. We show here that the gating mechanism happens by alterations in side chain
configuration at the pore and does not alter the over-all stability of the proteins.
Chapter 5 is the final section where we have employed site specific mutations and cocrystallization studies to elucidate the behaviour of MsDps2 proteins upon the addition of iron. By studying the effect of substitutions at conserved sites near ferroxidation center, we attempt to arrive at a pathway which iron atoms take to reach the ferroxidation site. Also, by crystallization of proteins loaded with varying amounts of iron we tried to map the changes in the protein structure in the presence of its ligand.
Chapter 6 concludes briefly the work that has been documented in this thesis.
Appendix I relates the role of N-terminal tail for DNA binding in MsDp2.
Appendix II gives the technical details of a modified protein preparation and oligomerization process for his-tagged MsDps1 protein.
Appendix III gives the maps of the plasmids used in this study.
|
45 |
Investigating Impact of Mycobacterial Physiology on Mycobacteriophage Life Cycles by Mass SpectrometryYi Li (5929964) 17 January 2019 (has links)
<div>
<div>
<div>
<p>Mycobacteriophages are the viruses that infect mycobacteria. Due to the high
death rate and antibiotic-resistant strains, phage therapy is considered to be a promising treatment of tuberculosis. Current understanding of phage-bacteria interaction is
abstracted as phage lytic and lysogenic life cycles. However, bacterial physiology may
impact phage life cycles and bacterial cells with different physiology may have different
responses to phage infection. In order to improve the understanding of phage-bacteria
interaction and update phage therapy strategy, the impact of mycobacterial physiology on mycobacteriophage life cycles was studied in this research. In this research,
a mass spectrometry-based method was first developed to study phage proteins in
phage-bacteria mixture. Then five mycobacteriophages isolated at Purdue University were selected to infect exponential and stationary <i>Mycobacterium smegmatis</i> (<i>M.
smegmatis</i>) cell cultures. Growth curves of the <i>M. smegmatis</i> cell cultures infected
by the five phages were determined. Proteomics and lipidomics of the <i>M. smegmatis</i>
cells cultures infected by phages FrenchFry and MrGordo were analyzed by mass spectrometry. The correlations between individual proteins/lipids and the experimental
factors (bacterial growth phases, phages and phage infection time) were studied by
developing linear regression models using SAS. The mass spectrometry-based method
was proved to be able to detect phage proteins other than the structural proteins.
It also verified the phage protein annotation that had been accomplished <i>in silico</i>.
X! Tandem and a database consisting of six frame translation of the phage genome
and the annotated proteins of <i>M. smegmatis</i> were the optimal option for analyzing mass spectra data of phage-bacteria mixture. The growth curves of the <i>M. smegmatis</i>
infected by the phages displayed that growth of exponential <i>M. smegmatis</i> cell cultures were depressed by phages (except FrenchFry) and stationary <i>M. smegmatis</i> cell
cultures were not actively lysed by any of the phages. The proteomics results showed
that MrGrodo infection impacted more proteins than other factors did. Exponential
phase up-regulated proteins involved in cell division. Stationary phase up-regulated
proteins that may change cell surface properties. FrenchFry up-regulated LuxR protein. Infection time up-regulated the proteins associated with mycobacterial virulence. The lipidomics results indicated that growth phases impacted the most lipids.
Phage infection time increased the amount of the lipids related to mycobacterial virulence. In summary, the mass spectrometry-based method developed in this research
can be employed to study phage proteins in phage-bacteria mixture and verify phage
genome annotation. Mycobacterial physiology alters mycobacteriophage life cycles.
Phage-bacteria interaction is the interaction between the two populations instead of
between an individual phage particle and an individual bacterial cell. Virulence of
<i>M. smegmatis</i> improves as a response to phage infection.</p></div></div></div>
|
46 |
Structural studies of Caseinolytic protease 1 from Mycobacterium tuberculosis and Methionyl-tRNA synthetase from Mycobacterium smegmatis /Ingvarsson, Henrik January 2010 (has links)
Tuberculosis is a severe disease that causes about 2 million deaths every year. It is a worldwide threat and it is estimated that one-third of the world’s population carries the infection. The severe side effects of the present drugs, and the more than 6 months long treatment, in addition to the development of resistant bacterial strains, are the incentives for the intensified search for new drugs. In this work two potential mycobacterial drug targets have been studied: Caseinolytic protease 1 (ClpP1) from Mycobacterium tuberculosis (Mt) and Methionyl-tRNA synthetase (MetRS) from Mycobacterium smegmatis (Ms). The X-ray stucture of ClpP1 was determined to 3.0 Å resolution. The study gives details on the tetradecameric arrangement of the enzyme. Two hepameric discs assemble to form a chamber containing the catalytic activity mediated by each of the monomers. The chamber can be reached by two pores. Comparison with the human homologue reveals important structural differences. The X-ray studies on Ms MetRS were done to 2.3 Å and 2.8 Å resolution. The study gives details on the flexibility of the enzyme and how this is related to activity. Important findings are identification of an intermediate structure in which the methionine to be adenylated is bound in the catalytic site in a tight complex. The catalytic site and the anticodon recognizing domains are separated and the structural results indicate communication between the domains. The possibility to allosterically inhibit the enzyme is discussed.
|
47 |
Structural Studies On Mycobacterial RecA And RuvARajan Prabhu, J 01 1900 (has links)
Homologous recombination is a fundamental cellular process evolved to maintain genomic integrity and to generate genetic diversity. It plays a crucial role in DNA repair, correct segregation of meiotic chromosomes and resumption of the stalled replication forks. In vitro, the homologous recombination pathway is kinetically separable into a four step process involving initiation, homologous pairing, branch migration and junction resolution. The process of pairing and strand exchange between two homologous double-stranded DNA molecules leads to the formation of an intermediate structure called the Holliday junction (HJ). The crucial enzyme involved in this step in bacteria is RecA. In eubacteria, the junction is processed by three proteins, collectively referred to as the RuvABC protein complex. RuvA binds to the HJ, while RuvB, a helicase, binds to the RuvA-HJ complex and pumps the duplex DNA thus facilitating branch migration. The work reported here is concerned with structural studies on mycobacterial RecA and RuvA.
X-ray crystallography was used to solve the protein crystal structures. The hanging drop vapour diffusion method was used for crystallization in all cases. X-ray intensity data were collected on a MAR Research imaging plate mounted on a Rigaku RU200 X-ray generator except for two data sets collected using synchrotron radiation. The data were processed mostly using Mosflm and Scala and few data sets were processed using the HKL program suite. The molecular replacement method using programs Phaser and AMoRe was used for structure solution. Structure refinements were carried out using programs CNS and PHENIX. Model building was performed using COOT and O. PROCHECK, MOLPROBITY, ALIGN and NACCESS were used for structure validation and analysis of the refined structures.
Mycobacterium smegmatis RecA (MsRecA) and its nucleotide complexes crystallize in three different, but closely related, forms characterized by specific ranges of unit cell dimensions. The six crystals discussed in the earlier part of the thesis and the five reported earlier, all grown under the same or very similar conditions, belong to these three forms, all in space group P61. They include one obtained by reducing the relative humidity around the crystal. In all crystals, RecA monomers form filaments around a 61 screw axis. Thus, the c-dimension of the crystal corresponds to the pitch of the RecA filament. As reported in the case of E.coli RecA, the variation in the pitch among the three forms correlate well with the motion of the C-terminal domain of the RecA monomers with respect to the main domain. The domain motion is compatible with formation of inactive as well as active RecA filaments involving monomers with a fully ordered C-domain. It does not appear to influence the movement upon nucleotide-binding of the switch residue Gln 196, which is believed to provide the trigger for transmitting the effect of nucleotide-binding to the DNA-binding region. Interestingly, partial dehydration of the crystal results in the movement of the residue, in a way similar to that caused by nucleotide-binding. The ordering of the DNA-binding loops L1 and L2, which present an ensemble of conformations, is also unaffected by domain motion. The conformation of loop L2 appears to depend upon nucleotide-binding presumably on account of the movement of the switch residue which forms part of the loop. The conformations of loops L1 and L2 are correlated and have implications to intermolecular communications within the RecA filament. The structures resulting from different orientations of the C-domain and different conformations of the DNA-binding loops appear to represent snapshots of the RecA molecule at different phases of activity and provide insights into the mechanism of action of RecA.
Crystal structures of mutants of MsRecA involving changes of Gln 196 from glutamine to alanine, asparagine and glutamic acid, wild type MsRecA and several of their nucleotide complexes were subsequently determined using mostly low temperature and partly room temperature X-ray data. At both the temperatures, nucleotide binding results in a movement of Gln 196 towards the bound nucleotide in the wild type protein. This movement is abolished in the mutants, thus establishing the structural basis for the triggering action of the residue in terms of the size, shape and the chemical nature of the side chain. The 25 crystal structures reported in this thesis, along with the 5 MsRecA structures reported earlier, provide further elaboration of the relation among the pitch of the `inactive´ RecA filament, the orientation of the C-terminal domain with respect to the main domain and the location of the switch residue. The low temperature structures define one extreme of the range of positions the C-domain can occupy. The movement of the C-domain is correlated to those of the LexA binding loop and the loop that connects the main and the N-terminal domains. These elements of molecular plasticity are made use of in the transition to the `active´ filament, as evidenced by the recently reported structures of RecA-DNA complexes. The available structures of RecA resulting from X-ray and electron microscopic studies appear to represent different stages in the trajectory of the allosteric transformations of the RecA filament. This work contributes to the description of the early stages of this trajectory and provides insights into structures relevant to the later stages.
The interesting results observed in the case of MsRecA prompted similar studies on the RecA from Mycobacterium tuberculosis (MtRecA). In this study, the crystals were grown at slightly different conditions and examined at different relative humidities and temperatures. Surprisingly, in spite of the 92% sequence identity between the two proteins, the structures indicated MtRecA to be substantially less plastic than MsRecA. The crystal structures do not provide an obvious explanation for this difference. Further studies are warranted to explain the molecular basis of the difference.
RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of four crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures determined as part of the doctoral programme and those reported earlier bring to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in HJ binding. This role along with its role in oligomerization could have important biological implications.
In addition to the work on RecA and RuvA, which forms the body of the thesis, the author was also involved in a structural bioinformatics study in which several carbohydrate binding proteins were probed to identify common minimum principles required for binding mannose, glucose and galactose. The study, presented in an Appendix, identified interactions that were specific to particular sugars, leading to individual fingerprints. These fingerprints were then used for exploring lead compounds, using a fragment based approach. This investigation helped the author to familiarize himself with the analysis of protein structures and ligand design based on them.
|
48 |
Cell Surface Of Mycobacterium Smegmatis At The Stationary Phase : Regulation Of Gene ExpressionMukherjee, Raju 07 1900 (has links)
Tuberculosis remains one of the oldest diseases known to mankind but still persists as a very major risk. Discovery of several antimycobacterials was marked by a steady decline in the active cases of pulmonary tuberculosis. However, in the recent past there has been a surge in its clinical incidence. The reasons for this failure are the emergence of multi drug resistance and the ability of the organism to survive under extreme condition or for a very long period of time known as ‘persistence’. The latter one established itself as a major hindrance in the effective control of tuberculosis. The latent bacilli are confined for a very long period after the infection in caseous cavities, called granulomma, inside the host and gets reactivated any time when the host becomes immuno-compromised. Latency has been successfully simulated in vitro by various models which mimic the in vivo condition by depleting O2 (Wayne, 1977), nutrients (Nyka, 1974) or the carbon source (Ojha et al., 2000).
Stationary phase is exemplary of a stage in bacterial growth where the organism is exposed to various stresses like nutrient starvation, accumulation of toxic metabolites, low temperature, high osmolarity and acidity to name a few. Some evidences suggest that cells survive in nutrient deprived stationary phase. The present investigation was pursued with an objective to further our understanding on the mechanism of adaptation that the persistent mycobacterium may undertake to survive during the stationary phase of growth. The fast growing M.smegmatis, a nonpathogenic member in the non-tuberculous genera, however, with a genetic and metabolic similarity to M.tuberculosis has been used as a model for this study.
Chapter 1 introduces the challenges in tuberculosis therapy and discusses the reason for drug tolerance and persistence of M.tuberculosis and M.avium complexes that were uncovered recently. It focuses on the intricate lipid rich cell wall which forms the first barrier for drug delivery with an emphasis on the cell surface antigenic glycolipids, the glycopeptidolipids. A detail account of their structure, biosynthetic pathway, intracellular function and their implications on biofilm formation has been provided.
The evolution of the genetic approaches currently used in mycobacterial research is highlighted.
The transcription apparatus and the regulation of gene expression in mycobacteria at different environmental condition and stages of growth are also discussed. The need for a detail investigation of the stationary phase RNAP in mycobacteria is stressed.
Chapter 2 observes the changes in the cell surface of M.smegmatis at different ambience of growth. It focuses on the composition of glycopeptidolipid, one of the non-covalently attached free lipids and the mycolic-acids which are covalently attached to the inner layer of the cell wall. Composition of the mycobacterial cell wall with respect to the glycopeptidolipids and mycolic acids during biofilm mode of growth is also addressed. This chapter examines the conditional synthesis of a novel class of polar glycopeptidolipid in carbon starved cultures of M.smegmatis and determines their molecular structure.
Chapter 3 revisits the biosynthetic pathway of the glycopeptidolipids and justifies a need for a fresh perspective. It identifies a glycosyltransferase responsible for the transfer of an extra rhamnose to the existing rhamnose linked to the terminal alaninol in the new polar glycopeptidolipid. This chapter also identifies a conserved Polyketide synthase in the glycopeptidolipid biosynthetic cluster. Characterization of the domains present in its two distinct modules with a correlation to the structure of the fatty acylchain together with the formation of a hydroxy fatty acyl chain is delineated.
Chapter 4 deals with the construction of a suicide vector which when recombines to the mc2155 genome, incorporates a hexa-histidine tag at the C’ of the β΄ subunit of the RNAP. It details the strategy for the construction of the strain and established the genetic exchange event both genotypically and phenotypically. A single step procedure for purification of the holo-RNAP is also described in this chapter.
In chapter 5 the role of the mycobacterial principal likes sigma factor, SigB, at the stationary phase of growth is highlighted. An approach of expression proteomics involving differential display of the total protein was undertaken to investigate the genes that are under the SigB regular during the stationary phase of growth. This chapter also examines the stationary phase induced changes in the RNAP. Various proteins that interact with the assembly are identified and their role in conferring rifampicin resistance to the RNAP is described.
Appendix 1 details the preparation of the partially methylated deoxy monosaccharide using the esoteric reactions of organic synthesis. They were used extensively for glycosyl linkage analysis of the glycopeptidolipids by mass spectrometry, where they acted as standards.
|
49 |
Fighting Tuberculosis – : Structural Studies of Three Mycobacterial ProteinsCastell, Alina January 2008 (has links)
This thesis presents the cloning, purification, crystallization, and structural studies of two unknown proteins from Mycobacterium tuberculosis, and of an aminotransferase from Mycobacterium smegmatis. Structural knowledge of these proteins is of highest interest for structure-based drug design, which is one of the approaches that can be used in order to fight tuberculosis (TB). The structure of the conserved hypothetical protein Rv0216 was refined to a resolution of 1.9 Å. The structure exhibits a so-called double hotdog-fold, similar to known hydratases. However, only parts of the hydratase active site are conserved in Rv0216, and no function could be assigned to the protein. Several Rv0216-like protein sequences were found in a variety of actino- and proteobacteria, suggesting that these proteins form a new protein family. Furthermore, other hotdog-folded proteins in M. tuberculosis were identified, of which a few are likely to be hydratases or dehydratases involved in the fatty acid metabolism. The structure of Rv0130 exhibits a single hotdog-fold and contains a highly conserved R-hydratase motif. Rv0130 was shown to hydrate fatty acid coenzyme A derivatives with a length of six to eight carbons. The Rv0130 active site is situated in a long tunnel, formed by a kink in the central hotdog-helix, which indicate that it can utilize long fatty acid chains as well. A number of previously predicted hotdog-folded proteins also feature a similar tunnel. The structure of branched chain aminotransferase (BCAT) of M. smegmatis was determined in the apo-form and in complex with an aminooxy inhibitor. Mycobacterial BCAT is very similar to the human BCAT, apart for one important difference in the active site. Gly243 is a threonine in the human BCAT, a difference that offers specificity in inhibition and substrate recognition of these proteins. The aminooxy compound and MES were found to inhibit the mycobacterial BCAT activities. The aminooxy compound inhibits by blocking the substrate-pocket. A second inhibitor-binding site was identified through the binding of a MES molecule. Therefore, both the MES-binding site and the substrate-pocket of M. smegmatis BCAT are suggested to be potential sites for the development of new inhibitors against tuberculosis.
|
50 |
Structural and Related Studies on Mycobacterial RecA and LexAChandran, Anu V January 2016 (has links) (PDF)
Genetic material of bacteria is subject to damage due to multitudinous factors, both extrinsic and intrinsic in origin. Mechanisms for the maintenance of genomic integrity are thus essential for a bacterium to survive. Bacterium also requires appropriate minor changes in the genetic material so as to adapt to the changing environments. Structural and related studies of two proteins from mycobacteria, one involved in recombinational DNA repair (RecA) and the other involved in SOS response which helps in adaptation to stress (LexA) form the subject matter of the thesis.
The available literature on structural and related studies on RecA and LexA are reviewed in the introductory chapter. The action of RecA involves transition to an active filament formed in association with DNA and ATP, from an inactive filament in the absence of DNA. The structure of the inactive filament was first established in E. coli RecA (EcRecA). The interaction of RecA with non-hydrolysable ATP analogues and ADP were thoroughly characterised and the DNA binding loops were visualised in this laboratory using the crystal structures involving the proteins from Mycobacterium tuberculosis (MtRecA) and Mycobacterium smegmatis (MsRecA). A switch residue, which triggers the transformation of the information on ATP binding to the DNA binding regions, was identified. The 20 residue C-terminal stretch of RecA, which is disordered in all other relevant crystal structures, was defined in an MsRecA-dATP complex. The ordering of the stretch is accompanied by the generation of a new nucleotide binding site which can communicate with the original nucleotide binding site of an adjacent molecule in the filament. The plasticity of MsRecA and its mutants involving the switch residue was explored by studying crystals grown under different conditions at two different temperatures and, in one instance, at low humidity. The structures of these crystals and those of EcRecA and Deinococcus radiodurans RecA (DrRecA) provide information on correlated movements involving different regions of the molecule. MtRecA has an additional importance as an adjuvant drug target in Mycobacterium tuberculosis. Apart from recombination, another important property of RecA is its coprotease activity whereby it stimulates the inherent cleavage of a certain class of proteins. One of the substrates for the coprotease activity of RecA is LexA. LexA is a transcriptional repressor involved in SOS response in bacteria. LexA performs its function through an autoproteolysis stimulated by RecA, resulting in the derepression of the genes under its control. Structural studies on LexA from E. coli have shown that it has an N-terminal domain involved in binding to DNA and a C-terminal domain involved in catalysis and dimerisation. LexA mediated SOS response in bacteria has been shown in many cases to be responsible for the resistance gained by bacteria on treatment with antibiotics. In that respect, LexA is considered to be a potential drug target in Mycobacterium tuberculosis.
Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions and reported in the thesis, provide insights into hitherto underappreciated details of molecular structure and plasticity (Chapter 2). In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the ‘switch’ residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. Details of the interactions of ligands with the protein, characterised in the structures, could be useful for design of inhibitors against M. tuberculosis RecA.
Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from M. tuberculosis, M. smegmatis and E. coli and their ATP complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural frame work within which RecA molecules from different eubacteria function (Chapter 3). Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the ‘switch’ residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins.
As described in Chapter 4, full length LexA, the N-terminal and C-terminal segments defined by the cleavage site, two point mutants involving changes in active site residues (S160A and K197A) and another involving change at the cleavage site (G126D) were cloned, expressed and purified. The wild type protein cleaves at basic pH. The mutants do not autocleave at basic pH even after incubation for 12 hours. The wild type and the mutant protein dimerise and bind DNA with equal facility. The C-terminal segment also dimerises, but has a tendency to form tetramer as well. The full length proteins including the mutants and the C-terminal segment crystallised. The structure of the crystals obtained for mutant G126D could not be solved. Each of the other crystals, four in number, contained only the catalytic core and a few residues preceding it, indicating that the full length proteins underwent cleavage, at the canonical cleavage site or elsewhere, during the long period involved in the formation of the crystals. Crystals obtained from the solutions of the wild type protein and the C-terminal segment contains dimers of the catalytic core. Crystals obtained using the active site mutants appear to contain different type of tetramers. One of them involves the swapping of the peptide segment preceding the catalytic core. Models of tetramerisation of the full length protein similar to those observed for the catalytic core are feasible. A model of a complex of MtLexA with M. tuberculosis SOS box could be readily built. In this complex, the mutual orientation of the two N-domains of the dimer is different from that in the EcLexA-DNA complex.
|
Page generated in 0.0878 seconds