• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • Tagged with
  • 18
  • 18
  • 18
  • 17
  • 17
  • 11
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the adaptation mechanism in the type II-A CRISPR-Cas system

Wong, Shi Pey 21 March 2019 (has links)
Das RNA-guided adaptive Immunsystem CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immunisiert prokaryotische Zellen gegenüber mobilen genetischen Elementen (MGEs). Bei der Adaption wird eine kurze Nukleinsäurensequenz (prespacer) von den MGEs gewonnen, verarbeitet und schließlich als spacer in das CRISPR-Array integriert. Cas1 und Cas2, die Hauptbestandteile der Adaption, bilden einen Integrase-Komplex, welcher neue spacer in das CRISPR-Array integriert. Der molekulare Mechanismus für die Adaptiondes Typ II-A Systems, welches cas9, cas1, cas2, csn2 und tracrRNA codiert, ist bis heute nicht vollständig verstanden. Daher untersuchten wir die Anforderungen der verschiedenen Cas-Proteine für den Adaptionsprozess. Wir verifizierten die Adaptions-Aktivität von Typ II-A Systemen des Streptococcus thermophilus LMD-9 anhand von Adaptionsstudien nach Phagen-Infektion. Dabei beobachteten wir höhere Akquisitionsraten im CRISPR3-Lokus im Vergleich zum CRISPR1-Lokus. Unsere Plasmid-basierte Adaptionsstudie bestätigte die Notwendigkeit von Cas9, zusätzlich zu Cas1, Cas2 und Csn2 bei der Adaption. Der yeast two-hybrid und der pull-down Ansatz zeigten sowohl spezifische Interaktionen zwischen den Cas-Proteinen, als auch Interaktionen zwischen Cas-Proteinen sowie DNA-Reparatur Proteinen. Die Regionen der Cas1 und Cas9 Interaktion wurden durch SPOT peptide assay identifiziert. Zusammenfassend weist unsere Studie darauf hin, dass Cas-Proteine sowohl mit Proteinen innerhalb, als auch außerhalb des CRISPR-Cas Systems interagieren, und bietet somit eine Basis für die Erforschung der möglichen Funktionen von DNA-Reparatur Proteinen in CRISPR-Cas Systemen und vice versa. / The RNA guided adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats) Cas (CRISPR-associated) immunizes prokaryotic cells against mobile genetic elements (MGEs). During spacer acquisition stage, a short nucleic acid sequence (prespacer) is acquired from the MGEs, processed and finally integrated into the CRISPR array as a spacer, which serves as genetic memory to defend against the invasion of the cognate MGEs. The molecular mechanism for the spacer acquisition of the type II A systems, which encode cas9, cas1, cas2, csn2 and tracrRNA, is still not fully understood. Therefore, we investigated the requirement of the different Cas proteins for spacer acquisition. We verified the acquisition activity of the type II A systems of Streptococcus thermophilus LMD 9 via spacer acquisition studies by phage challenge. We observed higher acquisition rates in the CRISPR3 locus compared to the CRISPR1 locus. Our plasmid-based spacer acquisition study confirmed in addition to Cas1, Cas2 and Csn2 the requirement of Cas9 for spacer acquisition. Yeast two hybrid and pull down approaches revealed specific interactions among the Cas proteins, as well as interactions between Cas and DNA repair proteins. The interaction regions of Cas1 with Cas9 were identified by SPOT peptide assay. Altogether, our study suggests that Cas proteins interact with proteins within and beyond the CRISPR Cas systems, and it provides a basis for the investigation of the potential roles of DNA repair proteins in the CRISPR Cas systems and/or vice versa.
2

Organization and integration of large-scale datasets for designing a metabolic model and re-annotating the genome of mycoplasma pneumoniae

Wodke, Judith 19 March 2013 (has links)
Mycoplasma pneumoniae, einer der kleinsten lebenden Organismen, ist ein erfolgversprechender Modellorganismus der Systembiologie um eine komplette lebende Zelle zu verstehen. Wichtig dahingehend ist die Konstruktion mathematischer Modelle, die zelluläre Prozesse beschreiben, indem sie beteiligte Komponenten vernetzen und zugrundeliegende Mechanismen entschlüsseln. Für Mycoplasma pneumoniae wurden genomweite Datensätze für Genomics, Transcriptomics, Proteomics und Metabolomics produziert. Allerdings fehlten ein effizientes Informationsaustauschsystem und mathematische Modelle zur Datenintegration. Zudem waren verschiedene Beobachtungen im metabolischen Verhalten ungeklärt. Diese Dissertation präsentiert einen kombinatorischen Ansatz zur Entwicklung eines metabolischen Modells für Mycoplasma pneumoniae. Zuerst haben wir eine Datenbank, MyMpn, entwickelt, um Zugang zu strukturierten, organisierten Daten zu schaffen. Danach haben wir ein genomweites, Constraint-basiertes metabolisches Modell mit Vorhersagekapazitäten konstruiert und parallel dazu das Metabolome experimentell charakterisiert. Wir haben die Biomasse einer Mycoplasma pneumoniae Zelle definiert, das Netzwerk korrigiert, gezeigt, dass ein Grossteil der produzierten Energie auf zelluläre Homeostase verwendet wird, und das Verhalten unter verschiedenen Wachstumsbedingungen analysiert. Schließlich haben wir manuell das Genom reannotiert. Die Datenbank, obwohl noch nicht öffentlich zugänglich, wird bereits intern für die Analyse experimenteller Daten und die Modellierung genutzt. Die Entdeckung von Kontrollprinzipien des Energiemetabolismus und der Anpassungsfähigkeiten bei Genausfall heben den Einfluss der reduktiven Genomevolution hervor und erleichtert die Entwicklung von Manipulationstechniken und dynamischen Modellen. Überdies haben wir gezeigt, dass die Genomorganisation in Mycoplasma pneumoniae komplexer ist als bisher für möglich gehalten, und 32 neue, noch nicht annotierte Gene entdeckt. / Mycoplasma pneumoniae, one of the smallest known self-replicating organisms, is a promising model organism in systems biology when aiming to assess understanding of an entire living cell. One key step towards this goal is the design of mathematical models that describe cellular processes by connecting the involved components to unravel underlying mechanisms. For Mycoplasma pneumoniae, a wealth of genome-wide datasets on genomics, transcriptomics, proteomics, and metabolism had been produced. However, a proper system facilitating information exchange and mathematical models to integrate the different datasets were lacking. Also, different in vivo observations of metabolic behavior remained unexplained. This thesis presents a combinatorial approach to design a metabolic model for Mycoplasma pneumoniae. First, we developed a database, MyMpn, in order to provide access to structured and organized data. Second, we built a predictive, genome-scale, constraint-based metabolic model and, in parallel, we explored the metabolome in vivo. We defined the biomass composition of a Mycoplasma pneumoniae cell, corrected the wiring diagram, showed that a large proportion of energy is dedicated to cellular homeostasis, and analyzed the metabolic behavior under different growth conditions. Finally, we manually re-annotated the genome of Mycoplasma pneumoniae. The database, despite not yet being released to the public, is internally already used for data analysis, and for mathematical modeling. Unraveling the principles governing energy metabolism and adaptive capabilities upon gene deletion highlight the impact of the reductive genome evolution and facilitates the development of engineering tools and dynamic models for metabolic sub-systems. Furthermore, we revealed that the degree of complexity in which the genome of Mycoplasma pneumoniae is organized far exceeds what has been considered possible so far and we identified 32 new, previously not annotated genes.
3

Analyse der Substratbindestelle, der Stöchiometrie und der Transportfunktion von S-Einheiten bakterieller ECF-Transporter

Kirsch, Franziska 30 December 2015 (has links)
Energy-Coupling-Factor (ECF)-Transporter sind Aufnahmesysteme für Vitamine und Übergangsmetallkationen in Prokaryoten. Sie bestehen aus den zwei unverwandten Membranproteinen S und T sowie einem Paar ABC-ATPasen (A). Die S-Einheit vermittelt die Substratspezifität. Die Kombination aus der T- und den A-Einheiten wird als ECF bezeichnet. In dieser Arbeit wurden Fragen zur kontrovers diskutierten Stöchiometrie der Untereinheiten von ECF-Transportern sowie zur zuvor postulierten Substrattransport-Funktion einzelner S-Komponenten auch ohne ECF untersucht. Dazu wurden der ECF-Biotintransporter BioMNY, mehrere natürlicherweise in Organismen ohne ECF existierende biotinspezifische S Einheiten (BioY) sowie zwei Vertreter der metallspezifischen ECF-Systeme genutzt. Die S-Einheit BioY des dreiteiligen Biotinimporters lag in vitro als Monomer und Dimer vor. Oligomeres BioY wurde außerdem in lebenden Bakterienzellen beobachtet. „Pull-down“-Experimente zeigten, dass die T Komponente BioN im BioMNY-Komplex zum Teil als Dimer vorlag. Wachstumsuntersuchungen bestätigten die Transportfunktion von acht solitär vorkommenden BioY. Die in vitro auch für diese BioY-Proteine nachgewiesene Dimerisierung könnte die Transportfunktion von BioY ohne ECF erklären. Die metallspezifischen S Einheiten CbiM/NikM interagieren mit für die Transportfunktion essentiellen, zusätzlichen Transmembranproteinen (N) und zeichnen sich durch eine Topologie mit sieben Transmembranhelices und einem extrem konservierten, weit in das Proteininnere hineinragenden N-Terminus aus. Die Metallbindestelle besteht aus vier Stickstoffatomen von Met1, His2 und His67 und wird durch ein Netz aus Wasserstoffbrückenbindungen stabilisiert. Die Transport¬funktion von CbiMN bzw. Nik(MN) ohne ECF wurde in vivo mittels des nickelabhängigen Enzyms Urease als Indikator für die intrazelluläre Nickelkonzentration verifiziert. Zum gegenwärtigen Zeitpunkt ist die Funktion der für den Transport essentiellen N-Komponente jedoch noch unklar. / Energy-coupling factor (ECF) transporters are uptake systems for vitamins and transition metal cations in prokaryotes. They consist of the two unrelated membrane proteins S and T, and a pair of ABC ATPases (A). The S unit mediates substrate specificity. The combination of the T and the A units is called ECF. In this thesis the controversially discussed stoichiometry of the subunits of ECF transporters and the postulated substrate transport function of solitary S units without ECF were analysed. For this purpose, the biotin-specific ECF transporter BioMNY, several biotin-specific S units (BioY) encoded in organisms lacking any recognizable ECF and two metal-specific ECF transporters were used. The S unit BioY of the tripartite biotin importer existed in vitro as monomer and dimer. Furthermore, oligomeric BioY was observed in living bacterial cells. Oligomerisation of a part of the T unit BioN in the BioMNY complex was shown by “pull-down”- experiments. Growth analyses confirmed the transport function of eight solitary BioY proteins. The dimerisation, also proved for these solitary BioY proteins in vitro, could be an explanation for the transport function of BioY without ECF. The metal-specific S units CbiM/NikM interact with additional and for the transport function essential transmembrane proteins (N). The S units consist of seven transmembrane helices and an extremely conserved N-terminus, which extends deeply into the protein. The metal-binding site consists of four nitrogen atoms from Met1, His2 and His67 and is stabilised by a series of hydrogen bonds. The transport function of CbiMN and Nik(MN) without ECF was verified respectively in vivo using the nickel-depending enzyme urease as an indicator for intracellular nickel concentration, respectively. However, the role of the N component, which is essential for transport activity, is currently under investigation.
4

Regulation der Proteolyse des Masterregulators der generellen Stressantwort RpoS (σs) während des Wachstumszyklus von Escherichia coli

Kanow-Scheel, Christine 22 March 2017 (has links)
Der alternative Sigmafaktor RpoS ist der Masterregulator der generellen Stressantwort in Escherichia coli. Er kontrolliert ein Regulon von mehr als 500 Genen. In ungestressten Zellen ist die RpoS-Synthese gering, da RpoS nach Bindung an den spezifischen Erkennungsfaktor RssB von der ClpXP-Protease unter ATP-Verbrauch degradiert wird. RssB wird dabei nicht codegradiert und wirkt daher katalytisch. In gestressten Zellen wird RpoS stabilisiert. Die zentrale Fragestellung dieser Arbeit war, wann und wodurch RpoS in den beiden E. coli K12-Laborstämmen W3110 und MC4110 stabilisiert wird. Die Ergebnisse zeigen, dass die Verfügbarkeit von RssB und das Verhältnis von RpoS zu RssB die zentralen Schlüssel sind. In ungestressten Zellen sind die geringen Konzentrationen von RpoS und RssB durch homöostatisches Feedback aufeinander abgestimmt (RssB benötigt RpoS zu seiner Expression). In der postexponentiellen Wachstumsphase steigt der RpoS-Gehalt so stark an, dass die Zellen mit RpoS “überschwemmt“ werden und RssB austitriert wird. In der Stationärphase liegt RssB meist inaktiv vor. Zusammen mit dem Absinken des ATP-Gehalts führt das zur Stabilisierung von RpoS. Da parallel die Bindung von RpoD an die RNA-Polymerase (RNAP) durch Rsd inhibiert wird, (p)ppGpp die Bindung alternativer Sigmafaktoren an die RNAP fördert und Crl gezielt RpoS bei der Bindung an die RNAP unterstützt, kann RpoS nun erfolgreich mit den anderen Sigmafaktoren um die RNAP konkurrieren und die generelle Stressantwort initiieren. Im Stamm W3110 wird RpoS bereits in der späten postexponentiellen Phase stabilisiert und der hohe RpoS-Gehalt schafft in diesem Stamm die Basis für eine starke generelle Stressantwort. In MC4100 hingegen wird RpoS zweiphasig stabilisiert und wird am Ende der postexponentiellen Phase zunächst wieder destabilisiert. Das resultiert in einer geringeren Stressresistenz und Überlebensfähigkeit des MC4100 und belegt die stärkere Degenerierung des MC4100 im Vergleich zum W3110. / The alternative sigma factor RpoS is the master regulator of the general stress response in Escherichia coli, which controls a regulon of >500 genes. In unstressed cells RpoS levels are low, because upon binding to the specific RpoS recognition factor RssB, RpoS becomes degraded by the ATP-dependent ClpXP protease. RssB is not co-degraded and acts catalytically. In stressed cells RpoS becomes stabilized. The central question of this study was when and how RpoS is stabilized in the two E. coli K-12 laboratory strains W3110 and MC4110. The results show that the availability of RssB and the ratio of RpoS to RssB are the central key. In unstressed cells low levels of RpoS and RssB level are finely balanced due homeostatic feedback (the expression of RssB itself requires RpoS). During the post-exponential growth phase the RpoS level strongly increases, so that cells are ‘flooded‘ with RpoS which titrates RssB. During stationary phase RssB exists mainly in its inactive form. Along with a lower ATP level, this results in a stabilization of RpoS. Since in parallel binding of RpoD to RNA polymerase (RNAP) is inhibited by Rsd, (p)ppGpp promotes the binding of alternative sigma factors to the RNAP and Crl supports RpoS binding to RNAP, RpoS can successfully compete with other sigma factors for RNAP and initiate the general stress response. In strain W3110 RpoS is stabilized already during the late post-exponential phase and the high RpoS content in this strain creates the basis for a strong general stress response. In MC4100, however, RpoS is stabilized in two phases, and during the end of the post-exponential phase RpoS is even transiently destabilized again. This is reflected in reduced stress resistance and longterm survival of MC4100 and shows the stronger degeneration of strain MC4100 compared to W3110.
5

Die Funktion der redox-sensitiven periplasmatischen CSS-Domäne in der c-di-GMP-spezifischen Phosphodiesterase PdeC bei der Biofilmbildung in Escherichia coli

Herbst, Susanne 07 March 2018 (has links)
Der sekundäre Botenstoff c-di-GMP kommt in vielen Bakterienspezies vor und fördert dort die Bildung von Biofilmen. Für Abbau und Synthese von c-di-GMP in der Zelle sorgen Diguanylatzyklasen (DGCs) und Phosphodiesterasen (PDEs), an deren N-Terminus häufig Sensordomänen die enzymatische Aktivität steuern. In dieser Arbeit wurde die Regulation und Wirkungsweise einer Gruppe von PDEs mit einer neuartigen Sensordomäne, der CSS-Domäne, genauer charakterisiert. Die CSS-Domäne ist im Periplasma lokalisiert und besitzt zwei hochkonservierte Cysteine, von denen eines in dem namensgebenden CSS-Motiv arrangiert ist. Die Integration in die innere Membran erfolgt durch zwei Transmembrandomänen (TM1 und TM2), wobei TM2 die Verbindung zu der C-terminal gelagerten EAL-Domäne mit PDE-Aktivität herstellt. Die Analyse von PdeC als eine von fünf CSS-PDE in Escherichia coli K-12 zeigte, dass die Bildung einer Disulfidbrücke zwischen den konservierten Cysteinen vom oxidierende DsbA/DsbB-System katalysiert wird und zu einer Verminderung der enzymatischen Aktivität der EAL-Domäne führt. Im Gegensatz dazu führt die reduzierte freie Thiol-Form der CSS-Domäne zu einer stark erhöhten PDE-Aktivität verbunden mit der Dimerisierung über die TM2. Die Reduktion der CSS-Domäne führt außerdem zur Prozessierung durch die HtrA-Proteasen DegP und DegQ in ein membranständiges Fragment aus TM2+EAL-Domäne mit hoher enzymatischer Aktivität. Der Abbau durch DegP und DegQ im Periplasma ist sehr effizient. Auf der cytoplasmatischen Seite hingegen erfolgt die weitere Degradierung durch noch unbekannte Proteasen eher langsam, wodurch es unter bestimmten Bedingungen zur Akkumulierung der hochaktiven TM2+EAL-Form kommt. Durch das Zusammenspiel von redox-abhängiger Aktivitätskontrolle und Proteolyse der c-di-GMP-spezifischen PDE PdeC wird die Produktion der amyloiden Curli-Fasern und Cellulose reguliert, welche Hauptbestandteil der extrazellulären Matrix von Biofilmen sind. / The second messenger c-di-GMP promotes biofilm formation in many bacterial species. Phosphodiesterases (PDEs) and diguanylatcyclases (DGCs) - often controlled by various N-terminal sensor domains - degrade and synthesize c-di-GMP. The aim of this study was to characterize the mode of activation and physiological function of a new class of sensor domains, the CSS domain, which is coupled to an EAL domain with PDE activity and therefore potentially controlling c-di-GMP degradation. The CSS sensor domain contains two highly conserved cysteins in the periplasmic loop, of which one is arranged in the characteristic CSS motif. Integration into the inner membrane is ensured by two flanking transmembrane domains (TM1 and TM2), with TM2 providing a connection to the C-terminal EAL domain. Analysis of PdeC as one of 5 CSS-PDEs in Escherichia coli K-12 revealed a close linkage to the disulfide bond (DSB) system as well as important periplasmic proteases. Thus, formation of a DSB between the two conserved cysteins is promoted by the oxidizing DsbA/DsbB-system and reduces enzymatic activitiy of the EAL domain. In contrast, the free thiol form increases PDE activity and dimerizes via the TM2 domain. Moreover, reduction of the CSS domain results in degradation by the periplasmic HtrA proteases DegP and DegQ. These redundantly process PdeC to a shorter fragment containing the TM2 and EAL domain only, which shows dimerization as well and has high PDE activity. Degradation in the periplasm mediated by DegP and DegQ is very efficient. In contrast, further proteolysis in the cytoplasm by yet unidentified proteases is rather slow, allowing the accumulation of the highly active TM2+EAL form. Finally, the interplay of redox dependent activity control and proteolysis of the c-di-GMP specific PDE PdeC regulates production of curli and cellulose as major matrix components of the bacterial biofilm.
6

Identifizierung eines lokal wirkenden Proteinnetzwerks bei der c-di-GMP-vermittelten Kontrolle der Biofilmbildung in Escherichia coli

Sarenko, Olga 08 January 2018 (has links)
Bei den meisten Bakterien wird die Biofilmbildung durch das Botenmolekül c-di-GMP stimuliert. Durch die enzymatische Aktivität von c-di-GMP-synthetisierenden Diguanylatzyklasen/DGC und c-di-GMP-abbauenden Phosphodiesterasen/PDE wird der c-di-GMP-Gehalt als eine Antwort auf diverse Stress- und suboptimale Umweltbedingungen reguliert. Vor allem Gram-negative Bakterien haben multiple DGC/PDE. So besitzt Escherichia coli K-12 29 solche Proteine, darunter 12 DGC, 13 PDE sowie 4 degenerierte Proteine ohne enzymatische Funktion. Dieses komplexe c-di-GMP-Kontrollsystem reguliert die Produktion der extrazellulären Biofilmmatrix, die in E. coli während des Übergangs in die stationäre Wachstumsphase stattfindet. Das Ziel dieser Arbeit war es zu untersuchen, ob die 29 DGC/PDE von E. coli ein spezifisches Interaktom bilden, das DGC/PDE-Pärchen enthält. Durch umfangreiche Two-Hybrid-Untersuchungen konnte gezeigt werden, dass es ein solches Interaktom in der Biofilmregulationskaskade tatsächlich gibt, das allerdings nicht in Pärchen organisiert ist. Vielmehr wird die Biofilmbildung von einer Kerngruppe von Enzymen, welche multiple Interaktionen untereinander und mit anderen DGC/PDE aufweisen, kontrolliert. Die Funktionsweise der Kerngruppe von Enzymen könnte jedoch möglicherweise unter bestimmten Wachstumsbedingungen durch Interaktionen mit weiteren Proteinen moduliert werden. Die Dynamik des Interaktionsnetzwerks ermöglicht vermutlich eine rationelle Ressourcenverwaltung in den verschiedenen Zonen des Biofilms, was zum Aufbau der komplexen Matrixarchitektur beitragen könnte, und eine hohe Anpassungsfähigkeit der Bakterien und der von ihnen aufgebauten Biofilmstrukturen gewährleisten könnte. Insgesamt führt diese Arbeit aus einer systemischen Perspektive zu einem neuen Modell der lokalen Biofilmbildungsregulation durch den Botenstoff c-di-GMP und legt die Basis für weitere Untersuchungen der daran beteiligten Mechanismen einzelner GGDEF/EAL-Domäne-haltiger Proteine in E. coli. / The messenger molecule c-di-GMP stimulates the formation biofilms in most bacteria species. The enzymatic activities of the diguanylate cyclases/DGC and the phosphodiesterases/PDE adjust the c-di-GMP content in response to diverse stress and suboptimal environmental conditions. Above all, Gram-negative bacteria have multiple GGDEF/EAL domain proteins. Escherichia coli K-12 possesses 29 of such proteins: 12 DGCs, 13 PDEs and 4 so called degenerate proteins without any enzymatical function. Mainly, this complex c-di-GMP control system regulates the production of the extracellular biofilm matrix, which in E. coli takes place during the switch into the stationary growth phase. The main compounds of the matrix are amyloid curli-fibers and exoplysaccaride cellulose. The goal of this work was to investigate, whether the 29 DGC/PDE from E. coli develop a specific interactome containing additional DGC/PDE pairs. In a comprehensive two-hybrid study, it could be demonstrated that there is indeed a specific interactome in the biofilm formation cascade. However, this interactome does not contain additional DGC/PDE pairs. Mainly, the core group of enzymes, which have multiple interactions among each other and with other DGC/PDE, controls biofilm formation. Under certain growth conditions the mode of action of the core enzymes might be adjusted through the interaction with other proteins. Presumably, the dynamics of the interaction network allows managing the resources in the different biofilm zones efficiently, which could conribute to the complex organisation of the matrix architecture. Therefore, the rapid adaptation of bacteria and the formed biofilm structures could be better organized. Altogether, this work provides a new model for the local regulation of the biofilm formation by the secondary messenger c-di-GMP guided from a systemical perspective. Hereby, the basis for further investigations on regulation mechanisms of individual DGC/PDE was set. / Переход от подвижного и планктонообразного образа жизни к формированию биоплёнок является важной и интересной особенностью различных микроорганизмов. Кишечная палочка (Escherichia coli) представляет собой удобный модельный организм для изучения подобных трансформаций. У этой грамотрицательной бактерии образование биоплёнки обусловлено внутриклеточной аккумуляцией циклического дигуанилата (цикло-диГМФ). Известно, что активность ферментов, синтезирующих (дигуанилатциклазы/ДГЦ) и разлагающих (диэстеразы/ДЭ) эти сигнальные молекулы, меняется в ответ на стрессовые и субоптимальные раздражители. Кишечная палочка имеет 12 ДГЦ, 13 ДЭ и четыре дегенерированных протеина. Цель данной работы – изучить специфический, важный при формировании биоплёнки интерактом и выяснить, способны ли другие ДГЦ/ДЭ образовывать дополнительные ДГЦ/ДЕ модули и вносить свой вклад в формирование биоплёнки. В работе были изучены молекулярные взаимодействия, ответственные за формирование биоплёнок у кишечной палочки. Так, было доказано отсутствие в интерактоме дополнительных локальных ДГЦ/ДЕ модулей, участвующих при каскадных процессах регуляции роста биоплёнки. Установлено, что процесс формирования биоплёнки в большей степени контролируется основной группой ферментов, которые имеют множественные взаимодействия между собой и с другими ДГЦ/ДЭ. Вероятнее всего, такие взаимодействия способны модулировать работу основных ферментов при определенных условиях культивирования. Динамика подобной сети взаимодействий позволяет микроорганизмам целесообразно использовать свои клеточные ресурсы при образовании биоплёнок и вносит свой вклад в её сложную архитектуру, повышая тем самым приспособляемость бактерий и созданных ими сложных биоплёночных структур к внешним условиям. В целом, в данной работе предложена новая модель локальной регуляции образования биоплёнки с помощью сигнальной молекулы цикло-диГМФ и заложен фундамент для дальнейших исследований механизмов действия отдельных ДГЦ/ДЭ.
7

Characterization of Chromosomally Encoded Toxin-Antitoxin Systems in Streptococcus pyogenes

Zarate Bonilla, Lina Johana 19 September 2019 (has links)
Streptococcus pyogenes ist ein humanpathogenes Bakterium, welches verschiedene Gewebe besiedeln kann und dadurch unterschiedliche Krankheiten verursacht. Die enorme Anpassungsfähigkeit des Bakteriums beruht auf dessen Fähigkeit, verschiedene, vom Wirt induzierte Stresskonditionen zu ertragen. Genetische Faktoren, die in diesem Zusammenhang eine Rolle spielen, sind Toxin-Antitoxin (TA) Systeme. Typ II TA Systeme kodieren für zwei Proteine, ein Toxin und ein Antitoxin, die einen stabilen TA Komplex bilden. Verschlechtern sich die Wachstumsbedingungen, kann das Antitoxin proteolytisch abgebaut werden, wodurch das freigesetzte Toxin essentielle zelluläre Prozesse des Bakteriums inhibiert. In dieser Studie charakterisierte ich zwei chromosomal kodierte ParDE TA Systeme des pathogenen Bakteriums S. pyogenes. Ähnlich zu anderen Systemen werden das Toxin und das Antitoxin beider hier charakterisierten Systeme co-transkribiert und durch Stresseinwirkung (z.B. Aminosäure-mangel) induziert. Zudem konnten weitere posttranskriptionelle bzw. posttranslationale Mechanismen zur Regulierung der Genexpression beider Systeme nachgewiesen werden. Die extrachromosomale Expression der Toxine ParE1 und ParE2 führten in S. pyogenes und Escherichia coli zum Zelltod, wobei die Co-expression der entsprechenden Antitoxine ParD1 und ParD2 die Toxizität minderte. Allerdings verursachte die Überexpression der Antitoxine allein ebenfalls eine Inhibierung des Zellwachstums. ParD1 hemmte die Zellteilung in E. coli, wobei der N-Terminus des Proteins entscheidend für diesen Effekt zu sein schien. Zusammengefasst erweitern die Ergebnisse dieser Arbeit unser Verständnis von ParE Toxinen und verdeutlichen die diversen Mechanismen, welcher sich TA Systeme bedienen, um die bakterielle Physiologie zu beeinflussen. Zusätzlich gibt diese Arbeit einen Einblick in mögliche Mechanismen, die S. pyogenes implementiert, um Stresskonditionen im Wirt zu überdauern. / Streptococcus pyogenes is a human pathogen with a remarkable ability to colonize different tissues and to endure diverse host-induced stress conditions through mechanisms that have yet to be fully understood. One strategy employed by bacteria to cope with changing environments are toxin-antitoxin (TA) genetic modules. Under non-ideal conditions, the antitoxin is subject to proteolysis and thus the freed toxin protein can target crucial pathways in the cell modulating bacterial growth. This study, describes the characterization of two chromosomally encoded ParDE-like TA systems from the human pathogen S. pyogenes. The antitoxin-toxin genes of the parDEF1 and parDE2 TA systems are co-transcribed and triggered by stress-induced conditions. The parDE2 TA showed an inspected mRNA processing under amino acid starvation which suggest a putative post-transcriptional regulation. At the post-translational level, both systems are controlled by ClpXP antitoxin-protein degradation in vivo, an important factor for TA triggering. Furthermore, bacterial plasmid-based expression of the toxins ParE1 and ParE2 resulted in effects in cell viability while the antitoxin molecules ParD1 and ParD2 were able to prevent the toxins lethality, respectably. Unlike canonical antitoxins, both ParD1 and ParD2 molecules also displayed deleterious effects, which seemed to be exclusive and related with the N-terminus domain potentially involved in DNA-interaction. Finally, the ParE toxins presented remarkable plasticity, able to harm not only gyrase but also topoisomerase IV, two important bacterial drug targets that modulate DNA-topology. These results expand the view on the ParE molecular targets and highlight the diverse mechanisms TAs employ to modulate bacterial physiology. We also provide more insights into possible mechanisms that S. pyogenes employs to endure stress in the host and efficiently cause disease.
8

Molekularbiologische Analyse der Diguanylatzyklase DgcE sowie weiterer biofilmrelevanter Proteine und Signale in Escherichia coli

Pfiffer, Vanessa 02 July 2019 (has links)
Für die E. coli K12 Biofilmbildung ist die Expression des Masterregulators CsgD essentiell. Dies erfordert das Signalmolekül c-di-GMP, dessen Auf- und Abbau durch 12 Diguanylatzyklasen (DGCs mit GGDEF-Domänen) und 13 Phosphodiesterasen (PDEs mit EAL-Domänen) erfolgt. DgcE ist mit einer MASE1-umfassenden Transmembranregion (TM), drei PAS-, einer GGDEF- und einer degenerierten EAL-Domäne die strukturell komplexeste DGC und notwendig für die Biofilmbildung. Diese Arbeit zeigt, dass die Aktivität von DgcE einer hoch komplexen Regulation unterliegt. Einzelnen DgcE-Domänen konnten aktivierende bzw. inhibierende Rollen hinsichtlich der Biofilmmatrixsynthese zugeordnet werden. Die Biofilmbildung hängt von DgcE-produziertem c-di-GMP ab, wobei die DgcE-Dimerisierung v.a. durch die PAS-Region vermittelt wird. Die EAL-Domäne wirkt einer aktiven DgcE-Form entgegen. Für die DgcE-vermittelte Matrixproduktion sind die GTPase YjdA und sein Partnerprotein YjcZ nötig. Über Interaktionen mit YjcZ und der TM von DgcE vermittelt YjdA eine Komplexbildung. Die Interaktion von YjdA und DgcE sowie die Matrixproduktion hängen von der GTPase-Aktivität von YjdA ab. GTP wird daher als intrazelluläres Signal vorgeschlagen, das die Aktivierung von DgcE durch YjdA/YjcZ reguliert. Die MASE1-umfassende TM agiert als Zentrale der Signalintegration. Einerseits ist sie nötig für die DgcE-Aktivität und andererseits ist sie an einem massiven Abbau von DgcE beteiligt. Zudem wurden neu identifizierte Curli-regulierende Gene (rbsK, rbsR, ydcI, yieP, puuR) untersucht, wobei keines über das PdeR/DgcM/MlrA-Modul in die c-di-GMP-vermittelte CsgD-Expression eingreift. Flagellare Verknotungen in der unteren Schicht von E. coli Makrokolonien tragen zur Morphogenese dieser Makrokolonien bei. Diese Arbeit zeigt, dass Flagellenverknotungen zu einer verminderten Expression der Master-PDE PdeH beitragen, wodurch vermutlich die zelluläre c-di-GMP-Konzentration steigt und somit die Biofilmbildung begünstigt wird. / Biofilm formation of E. coli K12 requires the expression of the biofilm master regulator CsgD. This process depends on the signaling molecule c-di-GMP, which is synthesized by 12 diguanylate cyclases (DGCs with GGDEF domains) and degraded by 13 phosphodiesterases (PDEs with EAL domains). DgcE is the most complex DGC with a MASE1-containing transmembrane region (TM), three PAS, a GGDEF and a degenerate EAL domain, and it is essential for biofilm formation. This work shows that the regulation of the DgcE activity is highly complex. It was possible to assign activating and inhibitory roles to single domains of DgcE with regard to the expression of biofilm matrix components. C-di-GMP produced by DgcE is necessary for biofilm matrix production. The dimerization of DgcE is mainly mediated by the PAS region, whereas the EAL domain counteracts an active form of DgcE. DgcE-mediated matrix synthesis requires the activating signal input of the GTPase YjdA and its partner protein YjcZ. DgcE, YjdA and YjcZ form a protein complex in which YjdA directly interacts with YjcZ and the TM of DgcE. The interaction between DgcE and YjdA as well as the matrix expression depend on the GTPase activity of YjdA. Thus, it is proposed that GTP serves as an intracellular signal regulating the activation of DgcE by YjdA/YjcZ. The MASE1-containing TM proved to be a central hub for signal integration. It is both required for DgcE activity and for a massive degradation of DgcE. Furthermore, newly discovered curli-regulating genes (rbsK, rbsR, ydcI, yieP, puuR) have been analyzed. None of those gene products act on CsgD expression via the PdeR/DgcM/MlrA module. Flagellar entangling within the bottom layer of E. coli macrocolonies determines morphogenesis of macrocolonies. The data presented here suggest that the master PDE PdeH is somehow down-regulated by flagellar entangling, which probably results in a higher cellular c-di-GMP concentration, thereby promoting biofilm formation.
9

Analysis of CdgC as the major diguanylate cyclase in S. venezuelae

Neumann, Sara Alina 23 August 2021 (has links)
Die Entwicklung des grampositiven Bodenbakteriums Streptomyces ist in einem komplexen Lebenszyklus koordiniert, bestehend aus drei Stufen: vegetativem Hyphenwachstum, Luftmycelbildung und Sporulation. C-di-GMP kontrolliert die Enwicklung über zwei Effektorproteine: dem Masterregulator BldD und dem Anti-Sigmafaktor RsiG. In dieser Arbeit konnte gezeigt werden, dass das membranständige GGDEF-EAL Protein CdgC eine wichtige aktive Diguanylatzyklase (DGC) in S. venezuelae ist. Chromosomale Deletion von cdgC führte zu einer flachen, gräulichen Koloniemorphologie mit radialen Stegen und hydrophiler Oberfläche sowie zu frühzeitiger Sporulation ohne Lufthyphenbildung. Phänotypische Analysen zeigten, dass die DGC-Aktivität von CdgC essentiell ist für dessen biologische Rolle und deuten auf einen zusätzlichen Protein-spezifischen morphologischen Effekt von CdgC hin. CdgC-FLAG akkumuliert im Laufe des Lebenszyklus und scheint BldD-abhängig über eine c-di-GMP vermittelte Feedbackschleife reguliert zu werden. Frühere RNA-seq Daten, verifiziert für repräsentative Gene mittels qRT-PCR, deuten eine differentielle Expression der Bestandteile des hydrophoben Mantels als Ursache der Lufthyphendefizienz an. Konfokalmikroskopische Aufnahmen des bakteriellen Tubulin-Homologons FtsZ deuten einen c-di-GMP-sensitiven Einfluss von CdgC auf die Koordination der Zellteilung an. Zudem konnte nachgewiesen werden, dass CdgC mit sich selbst sowie drei potentiellen Membranproteinen interagiert. Demnach trägt CdgC zur Koordination von Zellteilungs- und hydrophoben Zelloberflächenproteinen bei und beeinflusst damit c-di-GMP-abhängig den Zeitpunkt der Sporenbildung. Insgesamt führt diese Studie CdgC als GGDEF-EAL-Tandemprotein mit spezifischem Knockout- Phänotyp ein, der von seiner DGC-Aktivität sowie seinem Membrananker bestimmt wird. Zudem ist CdgC, als Reaktion auf eine noch unbekannte Signalübertragungskaskade, an der Koordinierung von Zeitpunkt und Verlauf der Sporulation ausschlaggebend beteiligt. / The proliferation of Gram-positive soil bacteria Streptomyces is temporally and genetically coordinated with a complex developmental life cycle, including three main stages of differentiation: vegetative hyphal growth, formation of aerial mycelium and sporulation. The key factor of Streptomyces developmental control is c-di-GMP with to-date two identified effector proteins: the master regulator BldD and the anti-sigma factor RsiG. In this thesis, the membrane-associated GGDEF-EAL protein CdgC, was identified as a major active diguanylate cyclase (DGC) in S. venezuelae. Deletion of cdgC results in the unique flat gray colony morphology with radial wrinkles and a hydrophilic surface, that shows enhanced sporulation without forming aerial hyphae. Phenotypic analyses suggest, that the DGC activity is essential for its biological role, but hint to an additional protein specific role. The protein levels of CdgC-FLAG were found to accumulate during the life cycle of S. venezuelae. Further investigation of CdgC-FLAG in a strain carrying a DNA-binding deficient BldD_D116A allele indicated, that BldD represses the expression of CdgC in a regulatory feedback loop along with the DGCs CdgA, CdgB and CdgE. RNA‐sequencing data indicated that reduced expression levels of the major compounds of the hydrophobic sheath result in the initiation of sporulation out of the vegetative mycelium and were verified for representative examples via qRT-PCR. Confocal microscopic imaging of the bacterial tubulin homolog FtsZ indicated a contribution of CdgC via its DGC activity in coordination of the cell division. In addition, BTH screenings revealed self-interaction and identified three membrane associated interaction partners. In conclusion, this study introduces the GGDEF-EAL tandem protein CdgC, whose specific knockout phenotype is governed by its DGC activity and membrane association. CdgC seems to drive timing and mode of sporulation in response to an unknown signal to a major extend.
10

Cyclic di-adenosine monophosphate metabolism and functions in Streptomyces venezuelae

Latoscha, Andreas 07 May 2021 (has links)
Lebewesen nutzen nukleotid-basierte sekundäre Botenstoffe um extra- und intrazelluläre Signale zur Induktion einer entsprechenden Zellantwort weiterzuleiten. Das zyklische Dinukleotid c-di-AMP steuert verschiedene physiologische Prozesse und ist für viele Bakterien unter bestimmten Bedingungen essentiell. Dieses Signalmolekül muss präzise reguliert werden, da seine Akkumulation oft toxisch ist. Diadenylatzyklasen mit einer DAC-Domäne synthetisieren c-di-AMP, welches von Phosphodiesterasen (PDE) mit DHH/DHHA1- oder HD-Domänen abgebaut wird. Streptomyceten sind im Boden lebende, Gram-positive Actinobakterien mit einem komplexen Lebenszyklus, während welchem sie vielzählige sekundäre Metabolite, inklusive Antibiotika, produzieren. Die Regulierung des zellulären c-di-AMP und seine Bedeutung in der Streptomyceten-Biologie waren zu Beginn dieser Studie weitgehend unbekannt. Zur c-di-AMP-Synthese nutzen Streptomyces die DAC DisA, besitzen aber keine der typischen PDEs sowie die meisten der bekannten c-di-AMP-bindenden Effektoren. Diese Arbeit zeigt, dass DisA die wichtigste c-di-AMP-Synthetase in Streptomyces venezuelae ist. AtaC wurde als eine PDE identifiziert, welche eine neue Klasse von c-di-AMP PDEs begründet. Während eine ataC-Deletion zu Störungen in Differenzierung und Wachstum in S. Venezuelae führt, führt die Inaktivierung von disA zur Sensitivität gegenüber erhöhten Konzentrationen von monovalenten Kationen im Medium. CpeA und CpeD wurden als erste c-di-AMP-bindende Proteine im Streptomyces Signalnetzwerk charakterisiert. Die entsprechenden Gene sind in Operons mit putativen Kation/Proton-Antiportern cpeB bzw. cpeE kodiert und die jeweiligen Genprodukte interagieren c-di-AMP-abhängig in vivo. Obwohl Deletion von cpe und Überexpression von cpeABC in S. venezuelae keine Phänotypen zeigten, verbesserte die CpeABC-Expression in Escherichia coli das Wachstum in Kalium-supplementierten Medien, was auf eine Funktion von cpe in der Regulation von Kalium hindeutet. / Nucleotide second messengers are used by all forms of life to transduce extra and intracellular signals and translate them into a physiological cell response. The cyclic dinucleotide c-di-AMP is a signaling molecule involved in diverse functions in bacterial physiology and is essential for many bacteria under certain growth conditions. However, this second messenger has to be tightly regulated since increased levels of c-di-AMP can be toxic. In many bacteria diadenylate cyclases with a conserved DAC domain synthesize c-di-AMP and phosphodiesterases (PDEs) with a DHH/DHHA1 or HD domain degrade it. Streptomyces spp. are soil-inhabiting gram-positive Actinobacteria characterized by a sophisticated developmental life cycle during which they produce various secondary metabolites, including antibiotics. The regulation and role of c-di-AMP is not well understood in Streptomyces biology. For c-di-AMP synthesis, streptomycetes utilize the DAC DisA but do not encode any canonical PDE and most of the known effector proteins for c-di-AMP signal transduction are absent. In this work, I demonstrated that DisA is the primary c-di-AMP synthetase in Streptomyces venezuelae and characterized AtaC as the founding member of a novel class of c-di-AMP-specific PDEs. In S. venezuelae, deletion of ataC interferes with development and growth, whereas disA inactivation affects bacterial survival under high ion osmotic stress conditions. Further, I identified CpeA and CpeD as the first c-di-AMP-binding proteins in Streptomyces. The respective genes are encoded in operons with the predicted cation/proton antiporters cpeB and cpeE, respectively, and the gene products interact in vivo in a c-di-AMP-dependent manner. Although neither cpe deletion nor overexpression of cpeABC produced a phenotype in S. venezuelae, expression of cpeABC in Escherichia coli improved growth in liquid media supplemented with potassium, suggesting that Cpe transporters are involved in potassium homeostasis.

Page generated in 0.0277 seconds