• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 558
  • 500
  • 102
  • 95
  • 53
  • 26
  • 14
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1484
  • 977
  • 240
  • 199
  • 137
  • 116
  • 110
  • 91
  • 88
  • 83
  • 80
  • 78
  • 77
  • 75
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Studies of glycosyltransferases involved in mycobacterial cell wall biosynthesis

Tam, Pui Hang. January 2009 (has links)
Thesis (Ph. D.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Nov. 25, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Chemistry, University of Alberta." Includes bibliographical references.
652

Direct detection of mycobacterium tuberculosis in clinical specimens by PCR-ELISA

Wang, Ling-na. January 2001 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 41-49).
653

Detection of Mycobacterium avium subspecies paratuberculosis in dairy herds and comparative molecular characterization

Salem, Mohamed January 2009 (has links)
Zugl.: Giessen, Univ., Diss., 2009
654

Molecular epidemiological study of mycobacterium tuberculosis using IS6110-RFLP and MIRU typing

Ip, Ka-fai., 葉嘉輝. January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
655

Molecular characterization of multi-drug resistance mechanisms in mycobacterium tuberculosis

Siu, Kit-hang., 蕭傑恆. January 2010 (has links)
published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
656

Molecular characterization of fluoroquinolone resistance in mycobacterium tuberculosis

Lau, Wing-tong, Ricky., 劉永棠. January 2011 (has links)
The global emergence of drug resistance is posing increasing difficulties in the public health control and treatment of tuberculosis (TB). Fluoroquinolones (FQs) are regarded as having a pivotal role among the antimicrobial agents in multidrug regimens against multidrug-resistant tuberculosis (MDR-TB). Thus, early diagnosis of fluoroquinolone-resistant (FQr) MDR-TB and extensively drug-resistant tuberculosis (XDR-TB) by molecular tests has predictive value for the guidance of TB therapy. The pharmacokinetic (PK) and pharmacodynamic (PD) indices are valuable parameters to evaluate the activity and efficacy of fluoroquinolones (FQs) based upon the bactericidal effect and prevention of the emergence of resistance. In the first part of this study, the potencies of ofloxacin (OFX) and moxifloxacin (MXF) against clinical isolates of MDR-TB in terms of their PK/PD indices (Cmax/MIC90, AUC/MIC90, Cmax/MPC90 and AUC/MPC90) were investigated and compared. The results revealed that MXF displays higher ratios of PK/PD in vitro and could serve as a promising agent for the treatment of MDR-TB. Molecular tests on resistance genes are reliable and rapid technology for diagnosis of drug-resistant TB which facilitates timely patient management and public health control of TB. In the second part of the study, the feasibility of a PCRsequencing assay for the examination of mutations in the quinolone-resistance-determining- region (QRDR) of the gyrase A (gyrA) gene in FQ-resistant (FQr) Mycobacterium tuberculosis in direct clinical specimens was evaluated. As determined by gyrA QRDR DNA sequencing analysis, complete concordance of phenotypic and genotypic outcomes was demonstrated. The results indicate that the molecular assay is an accurate and effective method for the diagnosis of FQr TB and allows identification of mixed resistant variants in the same patient. GyrA mutations that associated with FQr in clinical isolates of M. tuberculosis were clustered in hotspot codons 88, 90, 91 and 94, corroborating other reports. We also detected a novel gyrA Ala74Ser mutation in M. tuberculosis directly from the respiratory specimens by using the PCR-DNA sequencing assay. In the third part of this study, the functional effect of the Ala74Ser mutant was verified through study of the DNA supercoiling inhibitory activities of OFX and MXF against the recombinant DNA gyrase. Fifty percent inhibitory concentrations (IC50) of FQs against the DNA supercoiling activities of the recombinant DNA gyrase complex reconstituted with gyrA Ala74Ser were eight-fold and 14-fold greater than the wild-type H37Rv reference strain, and results correlated well with their phenotypic drug susceptibilities. Besides, a combination of gyrA mutations (Glu21Gln, Ser95Thr and Gly668Asp) was also characterized to be non-functional polymorphisms. The impact of the gyrA Ala74Ser mutation on drug binding affinity was elucidated through a crystal structure model of the gyrA-MXF-DNA cleavage complex. Alanine at position 74 of gyrA in M. tuberculosis, which corresponds to the alanine at position 67 of gyrA in Escherichia coli, is an amino acid lying in the α3 helix domain which forms a hydrophobic interface between the gyrA-gyrA dimer. Perturbation of the gyrA-gyrA dimer interface caused by the Ala74Ser mutation probably disturbs the putative drug binding pocket, and leads to the reduction of the binding affinity of FQ due to the distance effect. This is the first report verifying that gyrA Ala74Ser mutation alone is responsible for FQr in M. tuberculosis. / published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
657

Molecular Motors of ESX-Type Secretion Systems

Ramsdell, Talia Lynn 17 December 2012 (has links)
Tuberculosis is an enormous global health problem. Despite decades of research, the mechanism(s) by which Mycobacterium tuberculosis (Mtb) mediates virulence remains incompletely understood. The ESX-1 secretion system is critical for Mtb to survive and cause disease in vivo, but its primary function and mechanism of action are unclear. The many inherent challenges of working with this slow-growing pathogen often limit the experimental approaches that can be used to address these questions. Thus, we have developed a model system in the nonpathogenic bacterium Bacillus subtilis to study ESX-type secretion systems. Here, we demonstrate that the B. subtilis yuk operon encodes an ESX-type secretion system responsible for the secretion of YukE. Additionally, we demonstrate that the yuk system is active in B. subtilis during conditions of nutrient deprivation and is required for normal biofilm formation. Interestingly, this is similar to our findings that the Mtb ESX-1 system plays dual roles in protein secretion and modulating cell wall integrity. One defining feature of all ESX loci is the presence of an FtsK/SpoIIIE family ATPase. Interestingly, these ATPases have a domain structure unique to ESX-associated ATPases, where each protein contains multiple (2-3) enzymatic domains. We used our B. subtilis system to dissect the mechanism of action of this unique class of motor proteins. We find that the yuk-encoded ATPase YukBA dimerizes to form a hexamer of enzymatic subunits that are differentially required for secretion. Strikingly, we find a unique requirement for rotational symmetry in the nucleotide binding activity of the subunits. Finally, we compared the energy requirements of the Mtb ESX-1 system and the B. subtilis yuk system. We find that these systems have some overlapping ATPase requirements for protein secretion and cell wall integrity/biofilm formation, suggesting that there is a conservation of function among ESX-type systems. We also find that some ATPase domains are differentially required for function between these two systems, which we postulate is due to the split protein architecture of the ESX-1-encoded ATPases. Together, these findings highlight the power of using a B. subtilis model system to understand the function and mechanism of action of ESX-type secretion systems.
658

Direct detection of mycobacterium tuberculosis in clinical specimens by PCR-ELISA

王玲娜, Wang, Ling-na. January 2001 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
659

Serine/threonine phosphorylation in mycobacterium tuberculosis : identification of protein kinase B (PknB) substrates

Lee, Guinevere Kwun Wing Queenie 05 1900 (has links)
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is one of the most prevalent infectious diseases in our world today. In order to survive within the host the bacteria need to sense and respond to changes in the environment; however, signal transduction in this bacterium is poorly understood. PknB is a serine/threonine kinase essential for the in vitro survival of M. tuberculosis and therefore a potential drug target against the bacteria. It is the goal of the current study to elucidate downstream substrates of PknB. We have found that PknB shares in vitro substrates with another serine/threonine kinase, PknH, implying the potential complexity of the signaling pathways in the bacteria. We have also provided the first description of the coupling between serine/threonine kinases PknB and PknH with a two-component system response regulator DevR, and further proposed Ser/Thr phosphorylation as the negative regulator of DevR transcription activator activity based on LC-MS/MS analysis. Finally, we have identified a previously unknown phosphoprotein glyceraldehyde 3-phosphate dehydrogenase encoded by the ORF Rv1436, which demonstrates autophosphorylation activity and which phosphorylation is independent of PknB. Overall, the current study has contributed to advance our understanding of the signal transduction pathways and phosphoproteome in Mycobacterium tuberculosis.
660

Structural Study of Lipid-binding Proteins

Tsai, Han-Chun 16 December 2013 (has links)
Tuberculosis and malaria are among the most deadly infectious diseases in the world. The prevalence in regions without well-established public health causes economical and financial burdens for both society and patients. There is an urgent need to find effective treatments due to the emergence of drug-resistant strains. The aim of the studies reported here was to gain knowledge from the protein structures that can lead to the elimination of these pathogens. In these studies, protein crystallography is the main method used to solve protein structure. Based on the protein structure, we used different methods to characterize the protein function of three lipid-binding proteins (LprG, LprA, and gp232), and to identify potent inhibitors against Plasmodium falciparum enoyl-ACP reductase (PfENR), a drug target protein involved in central lipid metabolism. To characterize the function of two lipid-binding proteins (LprG and LprA), liquid chromatography-mass spectrometry (LC-MS) was used to analyze the ligand extract. In the study of tail fiber protein from mycobacteriophage, we used protein sequence alignment to identify gp232 as a major tail fiber protein, which potentially binds to lipids on the cellular surface of mycobacteria. A pull-down assay and imaging methods (fluorescence microscopy and electron microscopy) were conducted to confirm the function of gp232. In the structural study of PfENR, the structure-activity relationships method was used to find potent inhibitors against PfENR, which would show stronger inhibition than the known inhibitor triclosan. The triclosan-like analogs with modification at the 5-position revealed a new binding site in PfENR that has great potential for improving the potency of inhibition. We found that two inhibitors containing the core structure of piperidine and tetrahydroquinoline reached this new binding site and were 10-fold more potent than triclosan. The structural study of PfENR provides structural insights into the inhibitor-binding site that can lead to the discovery of new drugs. The comprehensive knowledge that we gained from the structural studies of these lipid-binding proteins provide new information that could lead to a greater understanding of pathogen physiology or guide the discovery of effective treatments to eliminate the pathogens.

Page generated in 0.0822 seconds