• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of mycorrhizal networks in dry Douglas-fir forests

Teste, François Philippe 05 1900 (has links)
Mycorrhizal networks (MNs) are fungal hyphae that connect the roots of at least two plants, potentially providing a conduit for interplant resource transfer. Interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) is an obligate ectomycorrhizal (EM) tree species that has high potential to form MNs with neighboring trees because of its receptivity to a diverse community of EM fungi. This MN potential is expected to be greatest among conspecific trees. In this thesis, I determined the influence of MNs formed by residual Douglas-fir trees on interplant carbon transfer and survival, growth, physiology, and EM status of neighboring naturally regenerated and planted Douglas-fir seedlings. To do this, I used MN-restricting treatments and isotope gas-labeling techniques on sites harvested with variable tree retention to investigate how varying: i) proximity to conspecific trees affects EM colonization and performance of planted seedlings; ii) ‘donor’ tree size affects seedling establishment and carbon or nitrogen transfer, and; iii) soil disturbance stress affects net carbon transfer between established seedlings. Because I used physical barriers (i.e., mesh bags) to control for the presence and characteristics of the MN, I also verified the effectiveness of different-sized mesh pores at reducing hyphal connections between plants in the greenhouse. In my experiments, I found that MN-mediated colonization was not the dominant mechanism responsible for EM colonization of planted seedlings; other sources of inoculm (e.g., spores, sclerotia, hyphal fragments) were more important. I found that mature trees not only competed for resources with seedlings but offered some facilitative effects at intermediate distances within their rooting zones. My key finding was that access to a MN with residual trees benefited seedling survival and that this corresponded with increased carbon and nitrogen transfer to seedlings. In addition, I found that there was consistently a net gain in carbon by one seedling in a MN and this net transfer increased with relative growth rate of the receiver seedling. These results indicate that MNs can facilitate interplant carbon transfer and be important in regeneration dynamics in dry Douglas-fir forests.
2

Role of mycorrhizal networks in dry Douglas-fir forests

Teste, François Philippe 05 1900 (has links)
Mycorrhizal networks (MNs) are fungal hyphae that connect the roots of at least two plants, potentially providing a conduit for interplant resource transfer. Interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) is an obligate ectomycorrhizal (EM) tree species that has high potential to form MNs with neighboring trees because of its receptivity to a diverse community of EM fungi. This MN potential is expected to be greatest among conspecific trees. In this thesis, I determined the influence of MNs formed by residual Douglas-fir trees on interplant carbon transfer and survival, growth, physiology, and EM status of neighboring naturally regenerated and planted Douglas-fir seedlings. To do this, I used MN-restricting treatments and isotope gas-labeling techniques on sites harvested with variable tree retention to investigate how varying: i) proximity to conspecific trees affects EM colonization and performance of planted seedlings; ii) ‘donor’ tree size affects seedling establishment and carbon or nitrogen transfer, and; iii) soil disturbance stress affects net carbon transfer between established seedlings. Because I used physical barriers (i.e., mesh bags) to control for the presence and characteristics of the MN, I also verified the effectiveness of different-sized mesh pores at reducing hyphal connections between plants in the greenhouse. In my experiments, I found that MN-mediated colonization was not the dominant mechanism responsible for EM colonization of planted seedlings; other sources of inoculm (e.g., spores, sclerotia, hyphal fragments) were more important. I found that mature trees not only competed for resources with seedlings but offered some facilitative effects at intermediate distances within their rooting zones. My key finding was that access to a MN with residual trees benefited seedling survival and that this corresponded with increased carbon and nitrogen transfer to seedlings. In addition, I found that there was consistently a net gain in carbon by one seedling in a MN and this net transfer increased with relative growth rate of the receiver seedling. These results indicate that MNs can facilitate interplant carbon transfer and be important in regeneration dynamics in dry Douglas-fir forests.
3

Role of mycorrhizal networks in dry Douglas-fir forests

Teste, François Philippe 05 1900 (has links)
Mycorrhizal networks (MNs) are fungal hyphae that connect the roots of at least two plants, potentially providing a conduit for interplant resource transfer. Interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) is an obligate ectomycorrhizal (EM) tree species that has high potential to form MNs with neighboring trees because of its receptivity to a diverse community of EM fungi. This MN potential is expected to be greatest among conspecific trees. In this thesis, I determined the influence of MNs formed by residual Douglas-fir trees on interplant carbon transfer and survival, growth, physiology, and EM status of neighboring naturally regenerated and planted Douglas-fir seedlings. To do this, I used MN-restricting treatments and isotope gas-labeling techniques on sites harvested with variable tree retention to investigate how varying: i) proximity to conspecific trees affects EM colonization and performance of planted seedlings; ii) ‘donor’ tree size affects seedling establishment and carbon or nitrogen transfer, and; iii) soil disturbance stress affects net carbon transfer between established seedlings. Because I used physical barriers (i.e., mesh bags) to control for the presence and characteristics of the MN, I also verified the effectiveness of different-sized mesh pores at reducing hyphal connections between plants in the greenhouse. In my experiments, I found that MN-mediated colonization was not the dominant mechanism responsible for EM colonization of planted seedlings; other sources of inoculm (e.g., spores, sclerotia, hyphal fragments) were more important. I found that mature trees not only competed for resources with seedlings but offered some facilitative effects at intermediate distances within their rooting zones. My key finding was that access to a MN with residual trees benefited seedling survival and that this corresponded with increased carbon and nitrogen transfer to seedlings. In addition, I found that there was consistently a net gain in carbon by one seedling in a MN and this net transfer increased with relative growth rate of the receiver seedling. These results indicate that MNs can facilitate interplant carbon transfer and be important in regeneration dynamics in dry Douglas-fir forests. / Forestry, Faculty of / Graduate
4

A Mycorrhizal Model for Transactive Energy Markets

Gould, Zachary M. 08 September 2022 (has links)
Mycorrhizal Networks (MNs) facilitate the exchange of resources including energy, water, nutrients, and information between trees and plants in forest ecosystems. This work explored MNs as an inspiration for new market models in transactive energy networks, which similarly involve exchanges of energy and information between buildings in local communities. Specific insights from the literature on the structure and function of MNs were translated into an energy model with the aim of addressing challenges associated with the proliferation of distributed energy resources (DERs) at the grid edge and the incorporation of DER aggregations into wholesale energy markets. First, a systematic review of bio-inspired computing interventions applied to microgrids and their interactions with modern energy markets established a technical knowledge base within the context of distributed electrical systems. Second, a bio-inspired design process built on this knowledge base to yield a structural and functional blueprint for a computational mycorrhizal energy market simulation. Lastly, that computational model was implemented and simulated on a blockchain-compatible, multi-agent software platform to determine the effect that mycorrhizal strategies have on transactive energy market performance. The structural translation of a mapped ectomycorrhizal network of Douglas-firs in Oregon, USA called the 'wood-wide web' created an effective framework for the organization of a novel mycorrhizal energy market model that enabled participating buildings to redistribute percentages of their energy assets on different competing exchanges throughout a series of week-long simulations. No significant changes in functional performance –- as determined by economic, technical, and ecological metrics – were observed when the mycorrhizal results were compared to those of a baseline transactive energy community without periodic energy asset redistribution. Still, the model itself is determined to be a useful tool for further exploration of innovative, automated strategies for DER integration into modern energy market structures and electrical infrastructure in the age of Web3, especially as new science emerges to better explain trigger and feedback mechanisms for carbon exchange through MNs and how mycorrhizae adapt to changes in the environment. This dissertation concludes with a brief discussion of policy implications and an analysis applying the ecological principles of robustness, biodiversity, and altruism to the collective energy future of the human species. / Doctor of Philosophy / Beneath the forest floor, a network of fungi connects trees and plants and allows them to exchange energy and other resources. This dissertation compares this mycorrhizal network (mycorrhiza = fungus + root) to a group of solar-powered buildings generating energy and exchanging it in a local community marketplace (transactive energy markets). In the analogy, the buildings become the plants, the solar panels become the leaves, and the electrical grid represents the mycorrhizal network. Trees and plants produce their own energy through photosynthesis and then send large portions of it down to the roots, where they can trade it or send it to neighbors via the mycorrhizal network. Similarly, transactive energy markets are designed to allow buildings to sell the energy they produce on-site to neighbors, usually at better rates. This helps address a major infrastructure challenge that is arising with more people adding roof-top solar to their homes. The grid that powers our buildings is old now and it was designed to send power from a central power plant out to its edges where most homes and businesses are located. When too many homes produce solar power at the same time, there is nowhere for it to go, and it can easily overload the grid leading to fires, equipment failures, and power outages. Mycorrhizal networks solve this problem in part through local energy balancing driven by cooperative feedback patterns that have evolved over millennia to sustain forest ecosystems. This work applies scientific findings on the structure and function of mycorrhizal networks (MNs) to energy simulation methods in order to better understand the potential for building bio-inspired energy infrastructure in local communities. Specifically, the mapped structure of a MN of douglas-fir trees in Oregon, USA was adapted into a digital transactive energy market (TEM) model. This adaptation process revealed that a single building can connect to many TEMs simultaneously and that the number of connections can change over time just as symbiotic connections between organisms grow, decay, and adapt to a changing environment. The behavior of MNs in terms of when those connections are added and subtracted informed the functionality of the TEM model, which adds connections when community energy levels are high and subtracts connections when energy levels are low. The resulting 'mycorrhizal' model of the TEM was able to change how much energy each connected household traded on it by changing the number of connections (more connections mean more energy and vice versa). Though the functional performance of the mycorrhizal TEM did not change significantly from that of a typical TEM when they were the context of decentralized computer networks (blockchains) and distributed artificial intelligence. A concluding discussion addresses ways in which elements of this new model could transform energy distribution in communities and improve the resilience of local energy systems in the face of a changing climate.
5

Dynamika toků uhlíku a fosforu v arbuskulární mykorrhizní symbióze / Dynamics of carbon and phosphorus flows in arbuscular mycorrhizal symbiosis

Konvalinková, Tereza January 2017 (has links)
Dynamics of carbon and phosphorus flows in arbuscular mycorrhizal symbiosis Mgr. Tereza Konvalinková (doctoral thesis) Abstract Arbuscular mycorrhizal fungi (AMF) are widespread and highly specialized root symbionts, which gain all of their carbon (C) from the hosts, supplying plants with mineral nutrients (particularly with phosphorus, P) in return. This thesis focuses on the size and flexibility of C and P flows in arbuscular mycorrhiza in relation to environmental conditions, in particular to light and P availability. The indications that the symbiotic flows are regulated actively by both partners are discussed. The main findings are presented as a compilation of separate scientific works (two research articles, one review and one book section). A glasshouse experiment has shown that both mycorrhizal benefits and mycorrhizal colonization of medic (Medicago truncatula) by an AMF species (R. irregularis) decline along the gradient of decreasing light intensity. Interestingly, morphological adaptation of medic to the long-term light deprivation was boosted by mycorrhiza, probably because of C demand of AMF and due to the improved nutrition of the mycorrhizal plants. On the other hand, sudden 6-day shading caused rapid decline of shoot P content of mycorrhizal plants, accompanied with the accumulation of P...

Page generated in 0.0352 seconds