• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomic force microscopy probing methods for soft viscoelastic synthetic and biological materials and structures

Young, Seth Lawton 27 May 2016 (has links)
The focus of this dissertation is on refining atomic force micrscopy (AFM) methods and data analysis routines to measure the viscoelastic mechanical properties of soft polymer and biological materials in relevant fluid environments and in vivo using a range of relevant temperatures, applied forces, and loading rates. These methods are directly applied here to a several interesting synthetic and biological materials. First, we probe poly(n-butyl methacrylate) (PnBMA), above, at and below its glass transition temperature in order to verify our experimental procedure. Next, we use AFM to study the viscoelastic properties of coating materials and additives of silicone-based soft contact lenses in a tear-like saline solution. Finally, a major focus in this dissertation is determining the fundamental mechanical properties that contribute to the excellent sensitivity of the strain sensing organs in a wandering spider (Cupiennius salei) by probing under in vivo conditions. These strain-sensing organs are known to have a significant viscoelastic component. Thus, the cuticle of living spiders is directly investigated in near-natural environments (high humidity, temperatures from 15-40 °C). The main achievements of these studies can be summarized through the following findings: We suggest that full time-temperature-modulus relationships are necessary for the understanding of soft materials systems, and present a practical method for obtaining such relationships. These studies will have a direct impact on both scientists in the metrology field by developing practical experimental procedures and data analysis routines to investigate viscoelastic mechanical properties at the nanoscale, and future materials scientists and engineers by showing via spider mechanosensory systems how viscoelasticity can be applied for functional use in sensing technology.
2

Developing Biomimetic Design Principles for the Highly Optimized and Robust Design of Products and Their Components

Wadia, Anosh Porus 2011 August 1900 (has links)
Engineering design methods focus on developing products that are innovative, robust, and multi-functional. In this context, the term robust refers to a product's ability to accomplish successfully its predetermined functions. Owing to the abundance of optimized and robust biological systems, engineering designers are now looking to nature for inspiration. Researchers believe that biomimetic or bio-inspired engineering systems can leverage the principles, mechanisms, processes, strategies, and/or morphologies of nature's successful designs. Unfortunately, two important problems associated with biomimetic design are a designer's limited knowledge of biology and the difference in biological and engineering terminologies. This research developed a new design tool that addresses these problems and proposes to help engineering designers develop candidate bio-inspired products or solutions. A methodology that helps users infer or extract biomimetic design principles from a given natural system or biomimetic product pair is described in this thesis. The method incorporates and integrates five existing design tools and theories to comprehensively investigate a given natural system or biomimetic product. Subsequently, this method is used to extract biomimetic design principles from 23 biomimetic products and natural systems. It is proposed that these principles have the potential to inspire ideas for candidate biomimetic products that are novel, innovative, and robust. The principle extraction methodology and the identified principles are validated using two separate case studies and a detailed analysis using the validation square framework. In the first case study, two students and the author use the principle extraction methodology to extract characteristics from a natural system and a biomimetic product pair. Results from this case study showed that the methodology effectively and repeatedly identifies system characteristics that exemplify inherent biomimetic design principles. In the second case study, the developed biomimetic design principles are used to inspire a solution for an engineering design problem. The resulting solution and its evaluation show that the design's achieved usefulness is linked to applying the biomimetic design principles. Similar to the TRIZ principles, the biomimetic design principles can inspire ideas for solutions to a given problem. The key difference is that designers using TRIZ leverage the solution strategies of engineering patents, while designers using the biomimetic design principles leverage nature’s solution strategies. The biomimetic design principles are compared to TRIZ and the BioTRIZ matrix.
3

A systematic approach to bio-inspired conceptual design

Wilson, Jamal Omari 17 November 2008 (has links)
A Systematic Approach to Bio-inspired Conceptual Design
4

A Bio-inspired Solution to Mitigate Urban Heat Island Effects

Han, Yilong 18 June 2014 (has links)
Over the last decade, rapidly growing world energy consumption is leading to supply difficulties, exhaustion of fossil energy resources, and global environmental deterioration. More than one-third of energy expenditure is attributable to buildings. Urbanization is intensifying these trends with tighter spatial interrelationships among buildings. This is escalating building energy consumption due to the mutual impact of buildings on each other and, as a result, exacerbating Urban Heat Island (UHI) effects. I sought solutions to this significant engineering issue from nature, and discovered a similar heat island effect in flowers, namely the micro-greenhouse effect. However, a special cooling effect has been observed in a peculiar temperate flower, Galanthus nivalis, which generates cooler intrafloral temperatures. In this research, I studied the special retro-reflectance of the flower petals, which has been suggested as a possible contributor to this cooling effect, and implemented a bio-inspired retro-reflective pattern for building envelopes. I conducted cross-regional energy simulation of building networks in a dynamic simulation environment in order to examine its thermal-energy impact. I found that building surface temperatures dropped considerably when neighboring buildings were retrofitted with my bio-inspired retro-reflective facade. I concluded that my bio-inspired retro-reflective pattern for building envelopes; (1) lessens the reflected heat of solar radiation in spatially-proximal buildings leading to reduced UHI, and (2) reduces the energy required for cooling and, therefore, energy consumption. The research has further implications and contributions on building design, urban planning, development of retro-reflective technology, and environmental conservation. / Master of Science
5

Piezoelectric Energy Harvesting for Powering Wireless Monitoring Systems

Qian, Feng 26 June 2020 (has links)
The urgent need for a clean and sustainable power supply for wireless sensor nodes and low-power electronics in various monitoring systems and the Internet of Things has led to an explosion of research in substitute energy technologies. Traditional batteries are still the most widely used power source for these applications currently but have been blamed for chemical pollution, high maintenance cost, bulky volume, and limited energy capacity. Ambient energy in different forms such as vibration, movement, heat, wind, and waves otherwise wasted can be converted into usable electricity using proper transduction mechanisms to power sensors and low-power devices or charge rechargeable batteries. This dissertation focuses on the design, modeling, optimization, prototype, and testing of novel piezoelectric energy harvesters for extracting energy from human walking, bio-inspired bi-stable motion, and torsional vibration as an alternative power supply for wireless monitoring systems. To provide a sustainable power supply for health care monitoring systems, a piezoelectric footwear harvester is developed and embedded inside a shoe heel for scavenging energy from human walking. The harvester comprises of multiple 33-mode piezoelectric stacks within single-stage force amplification frames sandwiched between two heel-shaped aluminum plates taking and reallocating the dynamic force at the heel. The single-stage force amplification frame is designed and optimized to transmit, redirect, and amplify the heel-strike force to the inner piezoelectric stack. An analytical model is developed and validated to predict precisely the electromechanical coupling behavior of the harvester. A symmetric finite element model is established to facilitate the mesh of the transducer unit based on a material equivalent model that simplifies the multilayered piezoelectric stack into a bulk. The symmetric FE model is experimentally validated and used for parametric analysis of the single-stage force amplification frame for a large force amplification factor and power output. The results show that an average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). To further improve the power output, a two-stage force amplification compliant mechanism is designed and incorporated into the footwear energy harvester, which could amplify the dynamic force at the heel twice before applied to the inner piezoelectric stacks. An average power of 34.3 mW and a peak power of 110.2 mW were obtained under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. A comparison study demonstrated that the proposed two-stage piezoelectric harvester has a much larger power output than the state-of-the-art results in the literature. A novel bi-stable piezoelectric energy harvester inspired by the rapid shape transition of the Venus flytrap leaves is proposed, modeled and experimentally tested for the purpose of energy harvesting from broadband frequency vibrations. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams with bending and twisting deformations created by in-plane pre-displacement constraints using rigid tip-mass blocks. Different from traditional ways to realize bi-stability using nonlinear magnetic forces or residual stress in laminate composites, the proposed bio-inspired bi-stable piezoelectric energy harvester takes advantage of the mutual self-constraint at the free ends of the two cantilever sub-beams with a pre-displacement. This mutual pre-displacement constraint bi-directionally curves the two sub-beams in two directions inducing higher mechanical potential energy. The nonlinear dynamics of the bio-inspired bi-stable piezoelectric energy harvester is investigated under sweeping frequency and harmonic excitations. The results show that the sub-beams of the harvester experience local vibrations, including broadband frequency components during the snap-through, which is desirable for large power output. An average power output of 0.193 mW for a load resistance of 8.2 kΩ is harvested at the excitation frequency of 10 Hz and amplitude of 4.0 g. Torsional vibration widely exists in mechanical engineering but has not yet been well exploited for energy harvesting to provide a sustainable power supply for structural health monitoring systems. A torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer is developed in this dissertation to look into the feasibility of harvesting energy from oil drilling shaft for powering downhole sensors. A theoretical model of the torsional vibration piezoelectric energy harvester is derived and experimentally verified to be capable of characterizing the electromechanical coupling system and predicting the electrical responses. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to maximize the power output. Approximate expressions of the voltage and power are derived by simplifying the theoretical model, which gives predictions in good agreement with analytical solutions. Based on the derived approximate expression, physical interpretations of the implicit relationship between the power output and the position parameters of the piezoelectric transducer are given. / Doctor of Philosophy / Wireless monitoring systems with embedded wireless sensor nodes have been widely applied in human health care, structural health monitoring, home security, environment assessment, and wild animal tracking. One distinctive advantage of wireless monitoring systems is to provide unremitting, wireless monitoring of interesting parameters, and data transmission for timely decision making. However, most of these systems are powered by traditional batteries with finite energy capacity, which need periodic replacement or recharge, resulting in high maintenance costs, interruption of service, and potential environmental pollution. On the other hand, abundant energy in different forms such as solar, wind, heat, and vibrations, diffusely exists in ambient environments surrounding wireless monitoring systems which would be otherwise wasted could be converted into usable electricity by proper energy transduction mechanisms. Energy harvesting, also referred to as energy scavenging and energy conversion, is a technology that uses different energy transduction mechanisms, including electromagnetic, photovoltaic, piezoelectric, electrostatic, triboelectric, and thermoelectric, to convert ambient energy into electricity. Compared with traditional batteries, energy harvesting could provide a continuous and sustainable power supply or directly recharge storage devices like batteries and capacitors without interrupting operation. Among these energy transduction mechanisms, piezoelectric materials have been extensively explored for small-size and low-power generation due to their merits of easy shaping, high energy density, flexible design, and low maintenance cost. Piezoelectric transducers convert mechanical energy induced by dynamic strain into electrical charges through the piezoelectric effect. This dissertation presents novel piezoelectric energy harvesters, including design, modeling, prototyping, and experimental tests for energy harvesting from human walking, broadband bi-stable nonlinear vibrations, and torsional vibrations for powering wireless monitoring systems. A piezoelectric footwear energy harvester is developed and embedded inside a shoe heel for scavenging energy from heel striking during human walking to provide a power supply for wearable sensors embedded in health monitoring systems. The footwear energy harvester consists of multiple piezoelectric stacks, force amplifiers, and two heel-shaped metal plates taking dynamic forces at the heel. The force amplifiers are designed and optimized to redirect and amplify the dynamic force transferred from the heel-shaped plates and then applied to the inner piezoelectric stacks for large power output. An analytical model and a finite model were developed to simulate the electromechanical responses of the harvester. The footwear harvester was tested on a treadmill under different walking speeds to validate the numerical models and evaluate the energy generation performance. An average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). A two-stage force amplifier is designed later to improve the power output further. The dynamic force at the heel is amplified twice by the two-stage force amplifiers before applied to the piezoelectric stacks. An average power output of 34.3 mW and a peak power output of 110.2 mW were obtained from the harvester with the two-stage force amplifiers. A bio-inspired bi-stable piezoelectric energy harvester is designed, prototyped, and tested to harvest energy from broadband vibrations induced by animal motions and fluid flowing for the potential applications of self-powered fish telemetry tags and bird tags. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams constrained at the free ends by in-plane pre-displacement, which bends and twists the two sub-beams and consequently creates curvatures in both length and width directions. The bi-direction curvature design makes the cantilever beam have two stable states and one unstable state, which is inspired by the Venus flytrap that could rapidly change its leaves from the open state to the close state to trap agile insects. This rapid shape transition of the Venus flytrap, similar to the vibration of the harvester from one stable state to the other, is accompanied by a large energy release that could be harvested. Detailed design steps and principles are introduced, and a prototype is fabricated to demonstrate and validate the concept. The energy harvesting performance of the harvester is evaluated at different excitation levels. Finally, a piezoelectric energy harvester is developed, analytically modeled, and validated for harvesting energy from the rotation of an oil drilling shaft to seek a continuous power supply for downhole sensors in oil drilling monitoring systems. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. Approximate expressions of voltage and power of the torsional vibration piezoelectric energy harvester are derived from the theoretical model. The implicit relationship between the power output and the two position parameters of the transducer is revealed and physically interpreted based on the approximate power expression. Those findings offer a good reference for the practical design of the torsional vibration energy harvesting system.
6

Thermo-hygroscopic envelope to support alternative cooling systems: speculative feasibility study in a small office building

Marshall, Marionyt Tyrone 12 January 2015 (has links)
The thesis explores the technical feasibility of an alternative method of decoupling air-conditioning systems function within the context of ecological issues. The system is a variant of dedicated outdoor air systems to separate dehumidification and cooling in air conditioning equipment. The project specifically investigates locating these components within the building envelope. Placement in the envelope moves the systems closer to fresh air and offers architectural expression for components that are normally out of sight. Designers, engineers, building science, mechanical, structural, biologist, and architectural engineers ideally as agents offer beneficial improvement to the system. The reduction in size of components into the building envelope offers risk. The thesis design space uses historical works, biological analogues, and past work to ground the technical understanding of the topic. Specific use of biological inspired design realizes translation from other systems to improve the alternative decoupled air conditioning system. The thesis develops prototype models for lighting analysis and for sensible and latent heat calculations. Psychrometric charts serve as tools to understand the thermodynamic air-conditioning process in conventional direct expansion vapor compression and solar liquid desiccant air conditioning systems. Data, models, and sketches provide tools for improvements to the 'thick' building envelope. Finally, the diagrams translate into functional decompositions for modifications to improve the system. The thesis probes the constraints in the areas of cost, fabrication, and technology that may not yet exist for selective improvement rather than a barrier to development of the thesis.
7

Structure-Property Relations of the Exoskeleton of the Ironclad Beetle (Zopherus Nodulosus Haldemani)

Nguyen, Vina Le 08 December 2017 (has links)
In this study, structure-property relationships in the ironclad beetle (Zopherus nodulosus haldemani) exoskeleton are quantified to develop novel bio-inspired impact resistance technologies. The hierarchical structure of this exoskeleton was observed at various length scales for both the ironclad beetle pronotum and elytron. The exocuticle and endocuticle layers provide the bulk of the structural integrity and consist of chitiniber planes arranged in a Bouligand structure. The pronotum consists of a layered structure, while elytron consists of an extra layer with “tunnel-like” voids running along the anteroposterior axis along with smaller interconnecting “tunnel-like” voids in the lateral plane. Energy dispersive X-ray diffraction revealed the existence of minerals such as calcium carbonate, iron oxide, zinc oxide, and manganese oxide. We assert that the strength of this exoskeleton could be attributed to its overall thickness, the epicuticle layer thickness, the existence of various minerals embedded in the exoskeleton, and its structural hierarchy. The thickness of the exoskeleton correlates to a higher number of chitiniber planes to increase fracture toughness, while the increased thickness of the epicuticle prevents hydration of the chitiniber planes. In previous studies, the existence of minerals in the exoskeleton has been shown to create a tougher material compared to non-mineralized exoskeletons.
8

Systematic design of biologically-inspired engineering solutions

Nagel, Jacquelyn Kay 24 August 2010 (has links)
Biological organisms, phenomena and strategies, herein referred to as biological systems, provide a rich set of analogies that can be used to inspire engineering innovation. Biologically-inspired, or biomimetic, designs are publicly viewed as creative and novel solutions to human problems. Moreover, some biomimetic designs have become so commonplace that it is hard to image life without them (e.g. velcro, airplanes). Although the biologically- inspired solutions are innovative and useful, the majority of inspiration taken from nature has happened by chance observation, dedicated study of a specific biological entity (e.g., gecko), or asking a biologist to explain the biology in simple terms. This reveals a fundamental problem of working across the engineering and biological domains. The effort and time required to become a competent engineering designer creates significant obstacles to becoming sufficiently knowledgeable about biological systems (the converse can also be said). This research aims to remove the element of chance, reduce the amount of time and effort required to developing biologically-inspired solutions, and bridge the seemingly immense disconnect between the engineering and biological domains. To facilitate systematic biologically-inspired design, a design methodology that relies on a framework of tools and techniques that bridge the two domains is established. The design tools and techniques that comprise the framework achieve: Identification of relevant biological solutions based on function; translation of identified biological systems of interest; functional representation of biological information such that it can be used for engineering design activities; and conceptualization of biomimetic engineering designs. Using functional representation and abstraction to describe biological systems presents the natural designs in an engineering context and allows designers to make connections between biological and engineered systems. Thus, the biological information is accessible to engineering designers with varying biological knowledge, but a common understanding of engineering design methodologies. This work has demonstrated the feasibility of using systematic design for the discovery of innovative engineering designs without requiring expert-level knowledge, but rather broad knowledge of many fields. / Graduation date: 2011
9

Surveying trends in analogy-inspired product innovation

Ngo, Peter 22 May 2014 (has links)
Analogies play a well-noted role in innovative design. Analogical reasoning is central to the practices of design-by-analogy and bio-inspired design. In both, analogies are used to derive abstracted principles from prior examples to generate new design solutions. While numerous laboratory and classroom studies of analogy usage have been published, relatively few studies have systematically examined real-world design-by-analogy to describe its characteristics and impacts. To better teach design-by-analogy and develop support tools for engineers, specific insights are needed regarding, for example, what types of product advantages are gained through design-by-analogy and how different design process characteristics influence its outcomes. This research comprises two empirical product studies which investigate analogical inspiration in real-world design to inform the development of new analogy methods and tools. The first, an exploratory pilot study of 57 analogy-inspired products, introduces the product study method and applies several categorical variables to classify product examples. These variables measure aspects such as the composition of the design team, the driving approach to analogical reasoning, and the achieved benefits of using the analogy-inspired concept. The full scale study of 70 analogy-inspired products uses formal collection and screening methods and a refined set of classification variables to analyze examples. It adopts a cross-sectional approach, using statistical tests of association to detect relationships among variables. Combined, these surveys of real-world analogy-inspired innovation inform the development of analogy tools and provide a general account of distant analogy usage across engineering disciplines. The cross-sectional product study method demonstrated in this work introduces a valuable tool for investigating factors and impacts of real-world analogy usage in design.
10

Leaf-inspired Design for Heat and Vapor Exchange

Rupp, Ariana I.K.S. 25 August 2020 (has links)
No description available.

Page generated in 0.0381 seconds