• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The essential role of macrophages and TLR signaling in the host response to Mycoplasma pneumoniae

Lai, Jen-Feng. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on July 14, 2010). Includes bibliographical references.
2

Blockade of myd88 Attenuates Cardiac Hypertrophy and Decreases Cardiac Myocyte Apoptosis in Pressure Overload-Induced Cardiac Hypertrophy in Vivo

Ha, Tuanzhu, Hua, Fang, Li, Yuehua, Ma, Jing, Gao, Xiang, Kelley, Jim, Zhao, Aiqiu, Haddad, Georges E., Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 01 March 2006 (has links)
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 ± 0.013 vs. 0.31 ± 0.008), HW/TL by 47.2% (42.7 ± 1.30 vs. 29.0 ± 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 ± 0.006 vs. 0.44 ± 0.013) and HW/TL by 22.3% (33.2 ± 0.95 vs. 42.7 ± 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-κB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo.
3

The RNA Binding Protein SRSF1 modulates Immune and Cancer pathways by regulating MyD88 transcription

Unknown Date (has links)
Serine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated following SRSF1 overexpression. Pathway analysis showed that genes in the TNF/IL17 pathways were enriched in this dataset. Furthermore, we showed that MyD88, a strong activator of TNF transcription through transcription factors NF-κB and AP-1, is a primary target of SRSF1’s transcriptional activity. We propose that SRSF1 activates the transcription factors NF-κB and AP-1 through MyD88 pathway. SRSF1 overexpression regulates several genes that are deregulated in malignancies and immune disease, suggesting a role for SRSF1’s transcriptional activity in oncogenesis and immune response regulation. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
4

Gene regulation and immune mechanisms in multiple sclerosis experimental models /

Marta, Mónica Sofia Calado, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
5

A Tale of Two SNPS: Polymorphism Analysis of Toll-like Receptor (TLR) Adapter Proteins: A Dissertation

Nagpal, Kamalpreet 16 May 2011 (has links)
The innate immune system is the first line of defense against invading pathogens. Recognition of microbial ligands by the innate immune system relies on germ-line encoded, evolutionarily conserved receptors called pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one such family of PRRs and are involved in innate defenses to a variety of microbes. At the core of TLR signaling pathways are Toll interleukin-1 receptor (TIR) domain containing adapter proteins. Much of the specificity of TLR pathways arise from the differential use of these adapter proteins. The TLR signaling cascade that ensues upon ligand recognition is marked by finely orchestrated molecular interactions between the receptor and the TIR domain containing adapter proteins, as well as various downstream kinases and effector molecules. Conserving the structural integrity of the TLR components is thus essential for maintaining a robust host defense system. Sometimes, changes in a protein can be brought about by single nucleotide polymorphisms (SNPs). Studies carried out in this thesis focus on polymorphisms in MyD88 adapter-like (Mal) and myeloid differentiation protein 88 (MyD88), two TIR domain-containing adapter proteins, which incidentally are also highly polymorphic. Mal is a 235 amino acid protein that is involved in TLR2 and TLR4 signaling. The known polymorphisms in the coding region of Mal were screened with an aim to identify SNPs with altered signaling potential. A TIR domain polymorphism, D96N, was found to be completely defective in TLR2 and TLR4 signaling. Immortalized macrophage-like cell lines expressing D96N have impaired cytokine production as well as NF-κB activation. The reason for this loss-of-function phenotype is the inability of Mal D96N to bind the downstream adapter MyD88, an event necessary for signaling to occur. Genotyping studies reveal a very low frequency of this polymorphism in the population. Similar SNP analysis was carried out in myeloid differentiation protein 88 (MyD88). MyD88 is a key signaling adapter in TLR signaling; critical for all TLR pathways except TLR3. In reporter assays, a death domain variant, S34Y, was found to be inactive. Importantly, in reconstituted macrophage-like cell lines derived from knockout mice, MyD88 S34Y was severely compromised in its ability to respond to all MyD88-dependent TLR ligands. S34Y mutant has a dramatically different localization pattern as compared to wild type MyD88. Unlike wild type MyD88, S34Y is unable to form distinct foci in the cells but is present diffused in the cytoplasm. IRAK4, a downstream kinase, colocalizes with MyD88 in these aggregates or “Myddosomes”. S34Y MyD88, however, is unable to assemble into Myddosomes, thus demonstrating that proper cellular localization of MyD88 is a feature required for MyD88 function. This thesis thus describes two loss‐of‐function polymorphisms in TLR adapter proteins Mal and MyD88. It sheds light not only on the structural aspects of signaling by these two proteins, but also has implications for the development of novel pharmaceutical agents.

Page generated in 0.1076 seconds