• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 18
  • 17
  • 12
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 192
  • 33
  • 25
  • 25
  • 20
  • 18
  • 18
  • 18
  • 18
  • 17
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Molecular and cellular mechanisms of increased angiogenesis in multiple myeloma : a role for CXCL12.

Martin, Sally K. January 2009 (has links)
Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of plasma cells (PCs) within the bone marrow (BM). MM PC survival and expansion is dependent upon an adequate supply of oxygen and nutrients, and increased BM angiogenesis is a critical feature of MM progression. While MM PCs express and secrete a number of angiogenic factors, our current understanding of the precise mechanisms by which MM-induced angiogenesis occurs is incomplete. In this study, we collected specimens from patients with MM and the benign precursor condition MGUS, and demonstrated for the first time that circulating levels of the CXCL12 chemokine positively correlate with the degree of BM angiogenesis. Using conditioned media from a MM PC line, the contribution of MM PC-derived CXCL12 to angiogenesis was also examined and found to strongly induce vascular tube formation in vitro. In several other cell types, hypoxia has been shown to up-regulate CXCL12 expression. Studies investigating the hypoxic regulation of CXCL12 in MM PCs revealed that, while acute hypoxia is unable to stimulate CXCL12 expression, prolonged hypoxia significantly up-regulates CXCL12 mRNA and protein expression. To determine the mechanism(s) responsible for this, over-expression and RNA interference technology was employed to create genetically modified MM cells in which either HIF-1α or HIF-2α were overexpressed or knocked down. These studies showed that HIF-2α is the predominant mediator of the hypoxic induction of CXCL12 in MM PCs. The ability of HIF-2α to bind to the CXCL12 promoter was confirmed using EMSA and ChIP analyses. The role of CXCL12 in in vivo angiogenesis and the contribution of HIF-1α and HIF-2α were also examined. In these studies, transduced MM cells, in which HIF-1α, HIF-2α and CXCL12 were over-expressed or knocked down, were implanted into a vessel-poor, subcutaneous environment in immunocompromised mice. Tumour-induced angiogenesis was assessed after two weeks by measuring the haemoglobin content of excised implants. These studies confirmed that over-expression of CXCL12, HIF-1α and HIF-2α each stimulates a strong angiogenic response. Using the well-characterised CXCR4 antagonist, T140, CXCL12 was found to play a key role in the increased angiogenesis observed in response to HIF-1α and HIF-2α over-expression. These novel studies have shown that CXCL12 is an important mediator of angiogenesis in MM patients, and that aberrant CXCL12 expression by MM PCs is due, in part, to its hypoxic up-regulation mediated predominantly by HIF-2. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1365126 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2009
32

Molecular and cellular mechanisms of increased angiogenesis in multiple myeloma : a role for CXCL12.

Martin, Sally K. January 2009 (has links)
Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of plasma cells (PCs) within the bone marrow (BM). MM PC survival and expansion is dependent upon an adequate supply of oxygen and nutrients, and increased BM angiogenesis is a critical feature of MM progression. While MM PCs express and secrete a number of angiogenic factors, our current understanding of the precise mechanisms by which MM-induced angiogenesis occurs is incomplete. In this study, we collected specimens from patients with MM and the benign precursor condition MGUS, and demonstrated for the first time that circulating levels of the CXCL12 chemokine positively correlate with the degree of BM angiogenesis. Using conditioned media from a MM PC line, the contribution of MM PC-derived CXCL12 to angiogenesis was also examined and found to strongly induce vascular tube formation in vitro. In several other cell types, hypoxia has been shown to up-regulate CXCL12 expression. Studies investigating the hypoxic regulation of CXCL12 in MM PCs revealed that, while acute hypoxia is unable to stimulate CXCL12 expression, prolonged hypoxia significantly up-regulates CXCL12 mRNA and protein expression. To determine the mechanism(s) responsible for this, over-expression and RNA interference technology was employed to create genetically modified MM cells in which either HIF-1α or HIF-2α were overexpressed or knocked down. These studies showed that HIF-2α is the predominant mediator of the hypoxic induction of CXCL12 in MM PCs. The ability of HIF-2α to bind to the CXCL12 promoter was confirmed using EMSA and ChIP analyses. The role of CXCL12 in in vivo angiogenesis and the contribution of HIF-1α and HIF-2α were also examined. In these studies, transduced MM cells, in which HIF-1α, HIF-2α and CXCL12 were over-expressed or knocked down, were implanted into a vessel-poor, subcutaneous environment in immunocompromised mice. Tumour-induced angiogenesis was assessed after two weeks by measuring the haemoglobin content of excised implants. These studies confirmed that over-expression of CXCL12, HIF-1α and HIF-2α each stimulates a strong angiogenic response. Using the well-characterised CXCR4 antagonist, T140, CXCL12 was found to play a key role in the increased angiogenesis observed in response to HIF-1α and HIF-2α over-expression. These novel studies have shown that CXCL12 is an important mediator of angiogenesis in MM patients, and that aberrant CXCL12 expression by MM PCs is due, in part, to its hypoxic up-regulation mediated predominantly by HIF-2. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1365126 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2009
33

Molecular and cellular mechanisms of increased angiogenesis in multiple myeloma : a role for CXCL12.

Martin, Sally K. January 2009 (has links)
Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of plasma cells (PCs) within the bone marrow (BM). MM PC survival and expansion is dependent upon an adequate supply of oxygen and nutrients, and increased BM angiogenesis is a critical feature of MM progression. While MM PCs express and secrete a number of angiogenic factors, our current understanding of the precise mechanisms by which MM-induced angiogenesis occurs is incomplete. In this study, we collected specimens from patients with MM and the benign precursor condition MGUS, and demonstrated for the first time that circulating levels of the CXCL12 chemokine positively correlate with the degree of BM angiogenesis. Using conditioned media from a MM PC line, the contribution of MM PC-derived CXCL12 to angiogenesis was also examined and found to strongly induce vascular tube formation in vitro. In several other cell types, hypoxia has been shown to up-regulate CXCL12 expression. Studies investigating the hypoxic regulation of CXCL12 in MM PCs revealed that, while acute hypoxia is unable to stimulate CXCL12 expression, prolonged hypoxia significantly up-regulates CXCL12 mRNA and protein expression. To determine the mechanism(s) responsible for this, over-expression and RNA interference technology was employed to create genetically modified MM cells in which either HIF-1α or HIF-2α were overexpressed or knocked down. These studies showed that HIF-2α is the predominant mediator of the hypoxic induction of CXCL12 in MM PCs. The ability of HIF-2α to bind to the CXCL12 promoter was confirmed using EMSA and ChIP analyses. The role of CXCL12 in in vivo angiogenesis and the contribution of HIF-1α and HIF-2α were also examined. In these studies, transduced MM cells, in which HIF-1α, HIF-2α and CXCL12 were over-expressed or knocked down, were implanted into a vessel-poor, subcutaneous environment in immunocompromised mice. Tumour-induced angiogenesis was assessed after two weeks by measuring the haemoglobin content of excised implants. These studies confirmed that over-expression of CXCL12, HIF-1α and HIF-2α each stimulates a strong angiogenic response. Using the well-characterised CXCR4 antagonist, T140, CXCL12 was found to play a key role in the increased angiogenesis observed in response to HIF-1α and HIF-2α over-expression. These novel studies have shown that CXCL12 is an important mediator of angiogenesis in MM patients, and that aberrant CXCL12 expression by MM PCs is due, in part, to its hypoxic up-regulation mediated predominantly by HIF-2. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1365126 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2009
34

Molecular and cellular studies of zoledronic acid : a potent inhibitor of multiple myeloma-induced osteolysis /

Pan, Beiqing. January 2002 (has links) (PDF)
Thesis (M.Med.Sc.)-- University of Adelaide, Dept. of Medicine, 2002. / Bibliography: leaves 86-103.
35

Mechanisms of skeletal disease mediated by haematological malignancies /

Pan, Beiqing. January 2004 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Medicine and The Hanson Centre, Institute of Medical and Veterinary Science, 2004. / "August 2004" Errata inside front cover. Bibliography: leaves 126-159.
36

The CMRF-56+ blood dendritic cell preparation as a vehicle for multiple myeloma immunotherapy /

Turtle, Cameron J. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
37

Immunomodulatory drugs (IMiDs) in multiple myeloma: mechanism of action and clinical implications

Xu, Mengni 13 July 2017 (has links)
Immunomodulatory drugs (IMiDs) are a class of drugs, derived from the teratogenic compound thalidomide, that have made a major impact on treatment of many diseases, from multiple myeloma to assorted inflammatory diseases. From its dark beginnings as a teratogenic agent that caused phocomelia in newborn infants, thalidomide has resurged decades later as a potent immunomodulatory agent with widespread anti-inflammatory and anti-tumor effects. Research examining Thalidomide’s effects in vitro on malignant myeloma cells has led to the development of newer analogs, lenalidomide and pomalidomide, both of which are now available on the market. Clinically, these drugs have had a tremendous impact on patient progression-free survival, especially when administered in conjunction with other novel agents. Despite the numerous properties that have been reported for IMiDs, until recently, little was known about their mechanism of action. Knowledge of likely only one of IMiDs’ direct mechanism of action has not only opened up opportunities for additional discoveries, but also propelled research to better characterize genetic profiles of multiple myeloma patients and potential biomarkers of disease progression and response to treatment. This thesis will attempt to review the history and literature behind the biological mechanisms of IMiDs, the clinical risks and benefits of using such drugs as treatment for cancer, and future directions for areas of research.
38

Informatics Approaches for Integrative Analysis of Disparate High-Throughput Genomic Datasets in Cancer

January 2014 (has links)
abstract: The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that we see in cancer. There are more than 100 types of cancer, each having many more subtypes with aberrations being unique to each. In the past two decades, the widespread application of high-throughput genomic technologies, such as micro-arrays and next-generation sequencing, has led to the revelation of many such aberrations. Known types and subtypes can be readily identified using gene-expression profiling and more importantly, high-throughput genomic datasets have helped identify novel sub-types with distinct signatures. Recent studies showing usage of gene-expression profiling in clinical decision making in breast cancer patients underscore the utility of high-throughput datasets. Beyond prognosis, understanding the underlying cellular processes is essential for effective cancer treatment. Various high-throughput techniques are now available to look at a particular aspect of a genetic mechanism in cancer tissue. To look at these mechanisms individually is akin to looking at a broken watch; taking apart each of its parts, looking at them individually and finally making a list of all the faulty ones. Integrative approaches are needed to transform one-dimensional cancer signatures into multi-dimensional interaction and regulatory networks, consequently bettering our understanding of cellular processes in cancer. Here, I attempt to (i) address ways to effectively identify high quality variants when multiple assays on the same sample samples are available through two novel tools, snpSniffer and NGSPE; (ii) glean new biological insight into multiple myeloma through two novel integrative analysis approaches making use of disparate high-throughput datasets. While these methods focus on multiple myeloma datasets, the informatics approaches are applicable to all cancer datasets and will thus help advance cancer genomics. / Dissertation/Thesis / Ph.D. Biomedical Informatics 2014
39

APOBEC3B promotes genomic instability in myeloma cells / APOBEC3Bは骨髄腫細胞においてゲノム不安定性を促進する

Yamazaki, Hiroyuki 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22736号 / 医博第4654号 / 新制||医||1046(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 小川 誠司, 教授 武藤 学, 教授 滝田 順子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
40

A phase 1/2 study of ixazomib as a replacement for bortezomib or carfilzomib for multiple myeloma patients recently relapsed or refractory to their last combination regimen containing either bortezomib or carfilzomib

Forouzan, Eli 20 June 2020 (has links)
BACKGROUND: Multiple myeloma is a rare form of cancer that affects the proper function of plasma cells in the immune system. Patients experience symptoms ranging from bone pain to otherwise avoidable infections that can have negative effects on quality of life. Despite advances in multiple myeloma treatment leading to longer patient survival, it is still an incurable form of blood cancer. As a result, it is important for researchers to constantly investigate new avenues of treatment in order to delay disease progression. This study investigated whether the next generation proteasome inhibitor, ixazomib, could safely delay disease progression in patients who failed a combination regimen that included either the proteasome inhibitor bortezomib or carfilzomib. METHODS: This study is a phase 1/2, 3+3 design, intra-patient, multicenter, open-label, and non-randomized clinical trial that recruited patients that were previously on one of ten combination treatments containing the proteasome inhibitors bortezomib or carfilzomib. Patients must have shown progressive disease while on this treatment in order to qualify. They were given the same drugs and doses they were previously taking except that the proteasome inhibitor was replaced with ixazomib. The safety and efficacy measurements were taken periodically to assess patients’ disease burden. To assess safety, adverse events (AEs) and serious adverse events (SAEs) were recorded, codified, and quantified for analysis. In addition, the maximum tolerated dose (MTS) of ixazomib for three regimens for which it was unknown was investigated through the analysis of dose limiting toxicities (DLTs). Clinical benefit rate (CBR) and overall response rate (ORR) using response data were also determined. Lastly, Kaplan-Meir statistical analysis was used to calculate the secondary efficacy endpoints such as progression free survival (PFS) using data collected throughout the trial. RESULTS: Safety: 24.4% of patients experienced at least one ≥ Grade 3 serious adverse event, 33.3% experienced at least one ≥ Grade 3 adverse event, and two experienced dose limiting toxicities. Efficacy: ORR was 13.2% and the CRR was 18.4%. Median PFS was 2.1 months, duration of response (DOR) was 2.0 months, and overall survival (OS) was 7.9 months. However, the MTD of ixazomib for the three regimens which it was unknown for was not found due to the nature of the data distribution. CONCLUSION: The results indicated that ixazomib is not an effective replacement for bortezomib or carfilzomib in combination treatments containing these drugs, which is apparent from low primary and secondary efficacy endpoints. However, due to a low occurrence of adverse events, serious adverse events, and dose limiting toxicities safety was confirmed. In addition, physicians should determine the MTD on a case by case basis through individual dose escalations if ixazomib is to be used in this context.

Page generated in 0.0501 seconds