• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AB INITIO and DFT computational study of Myristinin A and A structurally- related molecule

Tshilande, Neani 20 September 2019 (has links)
MSc (Chemistry) / Department of Chemistry / The computational study of biologically active molecules is particularly important for drug development because it provides crucial information about the properties of a molecule, which determine its biological activities. The current work considers the results of a computational study of myristinin A and a structurally-related molecule (2-(4-hydroxyphenyl)-4-[2,4,6-trihydroxy-3-(9tetradecenoyl)phenyl]-3,4-dihydro-2H-benzopyran-7-ol, here denoted as DBPO). The two compounds pertain to the class of acylphloroglucinols. They were firstly isolated from Horsfieldia amygdaline, and they exhibit a variety of biological activities, including potent anti-inflammatory activity, potent DNA-damaging activity and DNA-polymerase ß inhibition. Their molecular structures differ only by the acyl chain. Both molecules have a bulky substituent meta to the acyl group consisting of a ring system (2-(4-hydroxyphenyl)-3,4-dihydro-2H-chromen-7-ol). The DBPO molecule can exist as cis and trans isomers in relation to the double bond present in the R chain, and both isomers are here investigated individually. The OHs ortho to the acyl group can form an intramolecular hydrogen bond (referred to as the first IHB) with the sp2 O atom of the acyl group. The phenol OHs neighbouring the substituent ring system can form O–Hπ interaction with the aromatic rings of the substituent, if suitable oriented. This study focuses on the identification of the stable conformers of these molecules (considering all the possible geometries obtainable by rotations about relevant single bonds), and of the factors stabilising the conformers. Full-optimisation calculations were performed in vacuo and also in three conveniently selected solvents. The results show that the dominant stabilising factors are the first IHB and the O–Hπ interactions. Other factors which have significant influence on conformational preferences are the orientation of the ring systems of the substituent, the orientation of the OHs on substituent, the mutual orientation of the OHs of the phloroglucinol moiety and also the orientation of the acyl chain. The results in solution are consistent with the findings of other acylphloroglucinols, for instance, the narrowing of the energy gaps and the increase of the dipole moment with the increase of solvent polarity. / NRF

Page generated in 0.0613 seconds