381 |
Linear dichroism in the NEXAFS spectroscopy of <i>n</i>-alkane thin filmsFu, Juxia 09 November 2006
Linear dichroism in Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy has been used to determine molecular orientation at surfaces and in microscopic domains. However, the molecular orientation of n-alkanes cannot be derived unambiguously from their NEXAFS spectra due to the inadequate understanding of the character of the relevant spectroscopic features in the NEXAFS spectra of n-alkanes (i.e. C 1s to sigma*C-H, C 1s to sigma*C-C transitions).<p>We have studied the linear dichroism in the NEXAFS spectra of n-alkane thin films by using angular dependent NEXAFS spectroscopy to explore the molecular orientation of hexacontane (HC, n-C60H122). The HC thin films were epitaxially grown onto the cleaved NaCl (001) surfaces by physical vapor deposition. NEXAFS spectra of the HC thin film were acquired at different angles using STXM microscopy. A detailed analysis of the angular dependence of the NEXAFS spectra of the HC thin film helps to understand the relationship between the linear dichroism and the molecular orientation in n-alkane molecules. This linear dichroism in the NEXAFS spectroscopy of n-alkanes is relevant for quantitative measurements of molecular orientation, such as for the microanalysis of crystalline organic materials. <p>The linear dichroism of the NEXAFS resonances for n-alkanes has also been studied by ab initio calculations. These calculations were carried out on an isolated n-alkane molecule and a cluster of n-alkane molecules. The calculations on an isolated n-alkane molecule are used to study the linear dichroism for the NEXAFS resonances above the C 1s IP. The cluster calculations account for matrix effects in the NEXAFS features of condensed n-alkanes. A comparison of calculations on an isolated molecule and on a cluster of molecules provides information on how the NEXAFS spectra change from gas phase to condensed phase and determines the linear dichroism of each NEXAFS feature below the C 1s IP.<p>In the process of preparing n-alkane thin films for the study of linear dichroism, the morphology and molecular orientation of n-alkane thin films with different chain length (n-C36H74 and n-C60H122) have also been investigated by the NEXAFS spectroscopy and microscopy. These thin films were epitaxially grown onto cleaved NaCl (001) surfaces by physical vapor deposition. The results revealed that the morphology and molecular orientation of n-alkane thin films depend on the chain length and deposition parameters, such as substrate temperature. These observations have been rationalized by the thermodynamics of nucleation and the kinetics of growth.
|
382 |
Linear dichroism in the NEXAFS spectroscopy of <i>n</i>-alkane thin filmsFu, Juxia 09 November 2006 (has links)
Linear dichroism in Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy has been used to determine molecular orientation at surfaces and in microscopic domains. However, the molecular orientation of n-alkanes cannot be derived unambiguously from their NEXAFS spectra due to the inadequate understanding of the character of the relevant spectroscopic features in the NEXAFS spectra of n-alkanes (i.e. C 1s to sigma*C-H, C 1s to sigma*C-C transitions).<p>We have studied the linear dichroism in the NEXAFS spectra of n-alkane thin films by using angular dependent NEXAFS spectroscopy to explore the molecular orientation of hexacontane (HC, n-C60H122). The HC thin films were epitaxially grown onto the cleaved NaCl (001) surfaces by physical vapor deposition. NEXAFS spectra of the HC thin film were acquired at different angles using STXM microscopy. A detailed analysis of the angular dependence of the NEXAFS spectra of the HC thin film helps to understand the relationship between the linear dichroism and the molecular orientation in n-alkane molecules. This linear dichroism in the NEXAFS spectroscopy of n-alkanes is relevant for quantitative measurements of molecular orientation, such as for the microanalysis of crystalline organic materials. <p>The linear dichroism of the NEXAFS resonances for n-alkanes has also been studied by ab initio calculations. These calculations were carried out on an isolated n-alkane molecule and a cluster of n-alkane molecules. The calculations on an isolated n-alkane molecule are used to study the linear dichroism for the NEXAFS resonances above the C 1s IP. The cluster calculations account for matrix effects in the NEXAFS features of condensed n-alkanes. A comparison of calculations on an isolated molecule and on a cluster of molecules provides information on how the NEXAFS spectra change from gas phase to condensed phase and determines the linear dichroism of each NEXAFS feature below the C 1s IP.<p>In the process of preparing n-alkane thin films for the study of linear dichroism, the morphology and molecular orientation of n-alkane thin films with different chain length (n-C36H74 and n-C60H122) have also been investigated by the NEXAFS spectroscopy and microscopy. These thin films were epitaxially grown onto cleaved NaCl (001) surfaces by physical vapor deposition. The results revealed that the morphology and molecular orientation of n-alkane thin films depend on the chain length and deposition parameters, such as substrate temperature. These observations have been rationalized by the thermodynamics of nucleation and the kinetics of growth.
|
383 |
Design, Synthesis and Catalytic Activity of Di-<i>N</i>-Heterocyclic Carbene Complexes of Nickel and PalladiumPaulose, Tressia Alias Princy 05 August 2009
<i>N</i>-heterocyclic carbenes (NHC) have widely been used as spectator ligands in organometallic chemistry. Chelating bidentate di-<i>N-</i>heterocyclic carbenes (diNHC) provide additional entropic stability to their complexes relative to monodentate analogues. The steric and electronic environment around the metal centre can be fine-tuned by varying the substituents on the nitrogen atoms of the diNHC ligand. Synthesis and characterization of air and moisture stable bis(diimidazolylidene)nickel(II) complexes, [(diNHC)2Ni]2+, and their corresponding silver(I) and palladium(II) analogues are described.<p>
Investigations into the catalytic potential of diNHC complexes of nickel as an alternative to palladium systems in carbon-carbon coupling reactions are discussed. In the Suzuki-Miyaura coupling reaction, the [(diNHC)2Ni]2+ complex was active for the coupling of aryl chlorides as well as aryl fluorides. The analogously synthesized Pd(II) complexes resulted in formation of (diNHC)PdCl2 species which were not active for the coupling of aryl fluorides. Transition-metal free coupling reactions were investigated and the results indicated that in the Mizoroki-Heck reaction, aryl iodides could be activated in the absence of nickel or palladium precatalysts when using Na2CO3 or NEt3 as base, while in the Suzuki-Miyaura reaction, aryl iodides and aryl bromides could be activated without any precatalyst when K3PO4 was used as base.<p>
A general route into the synthesis of non-symmetrically substituted ligand precursors has been developed. Synthesis and characterization of non-symmetrically substituted ligand precursors, and their corresponding silver(I), palladium(II) and nickel(II) complexes are described. The activity of one of the non-symmetrically substituted (diNHC)Pd(II) complexes in the Suzuki-Miyaura coupling reaction of bulky substrates has been investigated. Non-symmetrically substituted diNHC ligand precursors with a hemi-labile pyridine arm have been synthesized and their corresponding Ni(II) and Pd(II) complexes are described.<p>
Attempts to synthesize three-coordinate Pd(II) complexes using bulky â-diketiminato ligands are also discussed.
|
384 |
Preparation & Characterization of n-Type Amorphous Selenium Films as Blocking Layers in a-Se X-ray DetectorsDash, Isha 17 August 2009
The "n-like layer" is important in multilayer layer amorphous selenium (a-Se) based Xray
detector structures because it blocks the injection of holes from the positive electrode. The dark current in these devices is controlled primarily by hole injection,and the introduction of the n-like layer to block hole injection was a key development in the commercialization of a-Se X-ray detectors. An n-like a-Se layer is defined as a layer in which the electron range is much greater than the hole range, ¦Ìe¦Óe >> ¦Ìh¦Óh, where ¦Ó and ¦Ì are the lifetime and drift mobility of the charge carriers and the subscript e and h represent electrons and holes.<p>
This thesis examines the effect of doping a-Se with Group II elements (in particular Mg) towards finding a better n-like layer ¨C that with relatively long electron range (drift mobility ¡Á lifetime) , trap limited hole transport and which is stable against crystallization. Conventional Time of Flight (TOF) and Interrupted Field Time of Flight (IFTOF) transient photoconductivity measurements were used to characterize the
electron and hole transport in various Group II doped a-Se layers. The dependence of
the electron and hole lifetimes and drift mobilities on the composition of the n-like layer
was examined. The addition of Group II materials converts the a-Se starting material
from p-like into n-like. It was found that increasing the concentration of Mg increases
the electron range while limiting the hole range by modifying the population of deep
traps. The addition of As further limits the hole transport but does not alter the electron
range. The clear reproducibility of the thermal properties obtained from the Differential
Scanning Calorimetry (DSC) implies that small amounts of Mg can be used as a suitable n-type dopant.
|
385 |
Synthesis of Chiral N-Heterocyclic Carbene Precursors and Key Intermediates for Catalytic Enantioselective Cyclizations of Conjugated TrienesWilkerson, Phillip D 29 March 2012 (has links)
Cocatalyzed reactions using Brønsted acids and chiral N-heterocyclic carbenes to yield highly enantioselective products have been reported recently in many journals. The development of new chiral N-heterocyclic carbenes is a competitive field among synthetic chemist. In a recent study we found that conjugated trienes could be cyclized using Brønsted acids and chiral N-heterocyclic carbenes. The synthesis of novel chiral N-heterocyclic carbene precursors, and the precursors to novel conjugated trienes are reported herein.
|
386 |
Effektivare inköp på B&N Nordsjöfrakt : Amos M&POlofsson, Ola January 2002 (has links)
No description available.
|
387 |
Preparation & Characterization of n-Type Amorphous Selenium Films as Blocking Layers in a-Se X-ray DetectorsDash, Isha 17 August 2009 (has links)
The "n-like layer" is important in multilayer layer amorphous selenium (a-Se) based Xray
detector structures because it blocks the injection of holes from the positive electrode. The dark current in these devices is controlled primarily by hole injection,and the introduction of the n-like layer to block hole injection was a key development in the commercialization of a-Se X-ray detectors. An n-like a-Se layer is defined as a layer in which the electron range is much greater than the hole range, ¦Ìe¦Óe >> ¦Ìh¦Óh, where ¦Ó and ¦Ì are the lifetime and drift mobility of the charge carriers and the subscript e and h represent electrons and holes.<p>
This thesis examines the effect of doping a-Se with Group II elements (in particular Mg) towards finding a better n-like layer ¨C that with relatively long electron range (drift mobility ¡Á lifetime) , trap limited hole transport and which is stable against crystallization. Conventional Time of Flight (TOF) and Interrupted Field Time of Flight (IFTOF) transient photoconductivity measurements were used to characterize the
electron and hole transport in various Group II doped a-Se layers. The dependence of
the electron and hole lifetimes and drift mobilities on the composition of the n-like layer
was examined. The addition of Group II materials converts the a-Se starting material
from p-like into n-like. It was found that increasing the concentration of Mg increases
the electron range while limiting the hole range by modifying the population of deep
traps. The addition of As further limits the hole transport but does not alter the electron
range. The clear reproducibility of the thermal properties obtained from the Differential
Scanning Calorimetry (DSC) implies that small amounts of Mg can be used as a suitable n-type dopant.
|
388 |
Design, Synthesis and Catalytic Activity of Di-<i>N</i>-Heterocyclic Carbene Complexes of Nickel and PalladiumPaulose, Tressia Alias Princy 05 August 2009 (has links)
<i>N</i>-heterocyclic carbenes (NHC) have widely been used as spectator ligands in organometallic chemistry. Chelating bidentate di-<i>N-</i>heterocyclic carbenes (diNHC) provide additional entropic stability to their complexes relative to monodentate analogues. The steric and electronic environment around the metal centre can be fine-tuned by varying the substituents on the nitrogen atoms of the diNHC ligand. Synthesis and characterization of air and moisture stable bis(diimidazolylidene)nickel(II) complexes, [(diNHC)2Ni]2+, and their corresponding silver(I) and palladium(II) analogues are described.<p>
Investigations into the catalytic potential of diNHC complexes of nickel as an alternative to palladium systems in carbon-carbon coupling reactions are discussed. In the Suzuki-Miyaura coupling reaction, the [(diNHC)2Ni]2+ complex was active for the coupling of aryl chlorides as well as aryl fluorides. The analogously synthesized Pd(II) complexes resulted in formation of (diNHC)PdCl2 species which were not active for the coupling of aryl fluorides. Transition-metal free coupling reactions were investigated and the results indicated that in the Mizoroki-Heck reaction, aryl iodides could be activated in the absence of nickel or palladium precatalysts when using Na2CO3 or NEt3 as base, while in the Suzuki-Miyaura reaction, aryl iodides and aryl bromides could be activated without any precatalyst when K3PO4 was used as base.<p>
A general route into the synthesis of non-symmetrically substituted ligand precursors has been developed. Synthesis and characterization of non-symmetrically substituted ligand precursors, and their corresponding silver(I), palladium(II) and nickel(II) complexes are described. The activity of one of the non-symmetrically substituted (diNHC)Pd(II) complexes in the Suzuki-Miyaura coupling reaction of bulky substrates has been investigated. Non-symmetrically substituted diNHC ligand precursors with a hemi-labile pyridine arm have been synthesized and their corresponding Ni(II) and Pd(II) complexes are described.<p>
Attempts to synthesize three-coordinate Pd(II) complexes using bulky â-diketiminato ligands are also discussed.
|
389 |
Predicting Forage Nutritive Value Using an In Vitro Gas Production Technique and Dry Matter Intake of Grazing Animals Using n-AlkanesAguiar, Andre D. 2010 May 1900 (has links)
In the first experiment, forage samples (n = 39) were collected during 4 years (2006
? 2009) from pastures grazed by Santa Gertrudis cattle at the King Ranch, TX. The in vitro
gas production technique (IVGP) was performed to understand the pattern of fermentation
parameters of the forage and obtain fractional digestion rate (kd) values to predict total
digestible nutrients (TDN). The best nonlinear model to describe the IVGP values of the
forages was the two-pool logistic equation. The passage rate (kp) of 4%/h was used.. The kp
predicted by the Large Nutrient Ruminant System (LNRS) model was 3.66%/h. The average
TDN was 55.9% compared to 53.8% using a theoretical equation. In the second experiment,
Brahman bulls (n = 16) grazed Coastal bermudagrass pastures [Cynodon dactylon (L.) Pers.]
and stocked at a moderate to low grazing pressure. Three periods of fecal collections were
made within each period. Bulls were individually fed at 0700 and 1900 h of 400 g of corn
gluten pellets containing C32 n-alkanes. Each period was divided in 2 sub periods in which fecal samples were collected 4 times a day (0700, 1100, 1500 and 1900 h). N-alkanes in the
forage and feces were determined using gas chromatography. In the third experiment, four
methods were used to estimate dry matter intake (DMI): C31 or C33 with or without
adjustment for forage C32 (C31_0 and C33_0, respectively). There was a difference between
morning (0700 and 1100 h) and afternoon fecal collections (1500 and 1900 h) on the
predicted DMI using C31 (P = 0.0010), C33 (P = 0.0001), C31_0 (P = 0.0010), or C33_0 (P <
0.0001). There was no difference in average daily gain (ADG) between low and high
residual feed intake (RFI) (P = 0.5709). The nonparametric analysis indicated that preranking
animals for efficiency under confinement conditions does not guarantee (P <
0.0001) similar ranking under grazing conditions when using the alkane technique to
determine forage DMI. In order to estimate DMI at least 5 d of fecal collection and 2 times a
day of collection (0700 and 1500h) are needed to decrease the variability.
|
390 |
p-type semiconducting Cu2O thin films prepared by reactive magnetron sputtering and a study of its properties and applicationYang, Shun-jie 06 July 2005 (has links)
Polycrystalline p-Cu2O were fabricated by reactive rf magnetron sputtering . we found that The electrical, optical, and crystallographical properties of films were strongly dependent on the deposition condition . Grant size increasing in the range from 10 to 45nm , A hole concentration increasing in the range from 1016 to 1017 cm-3 and a mobility increasing on the order of 10-1 cm2/V s were obtained in the cuprous oxide thin film prepared by controlling work pressure (Argon partial partial pressure ) .
Fabricated thin-film heterojunction diodes consisting of a p-type cuprous oxide combined with and n-type Al-doped ZnO and ITO exhibited a rectifying current-voltage characteristic .
|
Page generated in 0.0549 seconds