Spelling suggestions: "subject:"dão existência global"" "subject:"cão existência global""
1 |
Existência e não existência de soluções globais para uma equação de onda do tipo p-Laplaciano / Existence and non-existence of global solutions for a wave equation with the p-Laplacian operatorCampos, Fabio Antonio Araujo de 15 March 2010 (has links)
Neste trabalho estudamos a equação de ondas do tipo p-Laplaciano \'u IND. tt\' - \'DELTA\' IND.p u + \'(- \'DELTA\' POT. alpha\' u IND. t\' = \' [u] POT.q - 2 u, definida num domínio limitado limitado do \'R POT. n\', com 2 \' > ou = \' p < q e 0 < \' alpha\' < 1. Utilizando o método de Faedo-Galerkin provamos a existência de soluções fracas globais para dados iniciais pequenos. Para essas soluções estudamos também o decaimento polinomial da energia associada. A questão da não existência de soluções globais é considerada para o caso em que a energia inicial do sistema é negativa / In this work we study the p-Laplacian wave equation \'u IND. tt\' - \' DELTA\' IND p u + \'(- \'DELTA\' POT. \'alpha\' \' u IND. t\' = \'[u] POT. q - 2 u, defined in a bounded domain of \'R POT n\', with 2 \'> or =\' p < q and 0 < \' alpha\' < 1. By using the Faedo-Galerkin method we prove the existence of weak global solutions for small initial data. We also study the polynomial decay of the associate energy. The blow-up of solutions in finite time is considered for negative initial energy
|
2 |
Existência e não existência de soluções globais para uma equação de onda do tipo p-Laplaciano / Existence and non-existence of global solutions for a wave equation with the p-Laplacian operatorFabio Antonio Araujo de Campos 15 March 2010 (has links)
Neste trabalho estudamos a equação de ondas do tipo p-Laplaciano \'u IND. tt\' - \'DELTA\' IND.p u + \'(- \'DELTA\' POT. alpha\' u IND. t\' = \' [u] POT.q - 2 u, definida num domínio limitado limitado do \'R POT. n\', com 2 \' > ou = \' p < q e 0 < \' alpha\' < 1. Utilizando o método de Faedo-Galerkin provamos a existência de soluções fracas globais para dados iniciais pequenos. Para essas soluções estudamos também o decaimento polinomial da energia associada. A questão da não existência de soluções globais é considerada para o caso em que a energia inicial do sistema é negativa / In this work we study the p-Laplacian wave equation \'u IND. tt\' - \' DELTA\' IND p u + \'(- \'DELTA\' POT. \'alpha\' \' u IND. t\' = \'[u] POT. q - 2 u, defined in a bounded domain of \'R POT n\', with 2 \'> or =\' p < q and 0 < \' alpha\' < 1. By using the Faedo-Galerkin method we prove the existence of weak global solutions for small initial data. We also study the polynomial decay of the associate energy. The blow-up of solutions in finite time is considered for negative initial energy
|
Page generated in 0.0699 seconds