• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and reactivity of scandium N-heterocyclic carbene complexes

Marr, Isobel Helen January 2014 (has links)
Chapter one introduces N-heterocyclic carbenes (NHCs) and discusses their use as ligands for rare earth metal complexes, with particular emphasis upon compounds synthesised from 2009 until the present day. Chapter two details the synthesis and characterisation of the homoleptic scandium-NHC complex [Sc(L)3] (L = [OCMe2CH2(1-C{NCHCHNiPr})]). Reactions of [Sc(L)3] with boranes, CO2 and CS2 are described which exploit the relative lability of the Sc–Ccarbene bond and allow formation of [Sc(L)2(OCMe2CH2(1-B'C{NCHCHNiPr}))] (B' = 9-BBN, BPh3, B(C6F5)3, BH3), [Sc(OCMe2CH2(1-O2CC{NCHCHNiPr})3]n, [Sc(L)2(OCMe2CH2 (1-S2CC{NCHCHNiPr})] and [Sc(L)(OCMe2CH2(1-S2CC{NCHCHNiPr})2]2. The chapter also discusses the reactivity of [Sc(L)3] towards substrates containing acidic C–H and N–H bonds and substrates containing polar E–X bonds (where E = C, Si, B, P and X = Cl, I). Chapter three describes the synthesis and characterisation of the NHC substituted scandium benzyl complexes [Sc(Bn)2(L)]2 and [Sc(Bn)(L)2], and the attempted synthesis of NHC substituted scandium aminobenzyl complexes. The reactivity of [Sc(Bn)2(L)]2 with RX substrates (R = alkyl) is discussed in detail; depending on the nature of the alkyl group, these reactions can allow formation of R–Bn , the result of carbon-carbon coupling. The complex [Sc(Bn)(L)Cl]2 has been isolated from these reactions and is structurally characterised. The reactivity of [Sc(Bn)2(L)]2 towards C–H bonds is explored and attempts to prepare NHC substituted scandium hydrides are described. Comparisons of the relative stability and reactivity of [Sc(Bn)2(L)]2 and [Sc(Bn)3(thf)3] are drawn. Chapter four documents the synthesis and characterisation of [Sc(Odtbp)2(L)] (Odtbp = 2,6-di-tert-butylphenoxide), [Sc(Odtbp)(L)2], and the samarium analogue [Sm(Odtbp)(L)2]. The reactivity of these complexes towards various small molecules is described. The chapter also details attempts to prepare the cationic scandium complexes [Sc(L)2][Bort] (Bort = bis[3,3',5,5'-tetra-(tert-butyl)-2,2-diphenolato]borate) and [Sc(L)2][B(Ph)4]. Chapter five provides overall conclusions to the work presented in this thesis. Chapter six contains all experimental and characterising data for the complexes and reactions detailed in this work.
2

d- and f-metal alkoxy-tethered N-heterocyclic carbene complexes

Fyfe, Andrew Alston January 2016 (has links)
Chapter one is an introduction, outlining the structure and bonding of N-heterocyclic carbenes (NHCs). It then goes on to give examples of f -metal NHC complexes and describes any reactivity or catalytic activity. Chapter two describes the synthesis of the transition metal NHC complexes [Fe (LMes)2] 3 and [Co(LMes)2] 4 (LMes = OCMe2 CH2(1-C{NCH2CH2NMes})). The heterobimetallic complexes [(LMes)Fe(μ-LMes)U(μ-{N(SiMe3)Si(Me)2CH2})(N(Si Me3)2)2] 5 and [(LMes)Co(μ-LMes)U(μ-{N(SiMe3)Si(Me)2CH2})(N(SiMe3)2)2] 6 were prepared from the reaction between [({Me3Si}2N)2U(NSiMe3SiMe2CH2)] and 3 or 4, respectively. Complex 5 was also synthesised by the reaction between 3 and [U(N{SiMe3}2)2]. The diamagnetic analogue [(LMes)Zn(μ-LMes)Th(μ-{N(SiMe3)Si (Me)2CH2})(N(SiMe3)2)2] 9 was prepared from the reaction between [Zn(LMes)2] and [({SiMe3}2N)2Th(NSiMe3SiMe2CH2)]. The reactivity of 5 is discussed. When 5 was reacted with 2,6-dimethylphenyl isocyanide, [({SiMe3}2N)2U{N(SiMe3)Si(Me2)C(CH2)N(2,6−Me−C6H3)}] 8 was isolated. The reaction with CO resulted in the formation of [({Me3Si}2N)2U{N(SiMe3) Si(Me2)C(CH2)CO}]. 5 showed no reactivity with azides, boranes or m-chloroperbenzoic acid and decomposed when exposed to H2, CO2 or KC8. The reaction between 6 and 2,6-di-tert-butylphenol formed the previously reported monometallic complex [({SiMe3}2N)2U(OC6H3tBu2)]. The serendipitous synthesis of the iron ate complex [Na(Fe{LMes}2)2]+ [Fe(ArO)3]– 10 (Ar = 2,6-tBu-C6H3) is also described. Chapter three describes the synthesis of the aryloxide complexes [HC(3-tBu-5-Me- C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2O)Co(THF)]2 11 and [HC(3- tBu-5-Me-C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2O)Zn(THF)n] 13. Treatment of 11 with pyridine N-oxide resulted in the formation of the pyridine-Noxide adduct [HC(3-tBu-5-Me-C6H2OH)(3-tBu-5-Me-C6H2O)μ-(3-tBu-5-Me-C6H2 O)Co(C5H5NO)]2 12. When 11 was treated with [({Me3Si}2N)2U(NSiMe3SiMe2C H2)], no reaction occured at room temperature but at 80◦C decomposition occured. When 11 was treated with [(NH4)2Ce(NO3)6] the protonated proligand HC(3-tBu- 5-Me-C6H2OH)3 reformed. The reactivity of 11 with [({Me3Si}2N)Ce(LiPr)2] is also discussed. Chapter three also discusses the preparation of the heterobimetallic complex [HC(3- tBu-5-Me-C6H2O)2-μ-(3-tBu-5-Me-C6H2O)KCo]2 14 and the salt-elimination chemistry of the complex. The preparation of [HC(3-tBu-5-Me-C6H2O)2-μ-(3-tBu-5- Me-C6H2O)KZn]2 15 is also outlined. Chapter four discusses the reactivity of [Ce(LiPr)3] (Li Pr =OCMe2CH2(1-C{NCHC HNiPr})) in C-H and N-H activation and as a catalyst for organic reactions. [Ce(LiPr)3] displayed no C-H activation chemistry with RC−−−CH (R = SiMe3, Ph, tBu), diphenyl acetone, indene or fluorene. [Ce(LiPr)3] also showed no N-H activation chemistry with pyrrole or indole, nor did it react with the lignin model compound PhOCH2Ph. When treated with an excess of benzyl chloride, [Ce(LiPr)3] underwent ligand decomposition to form the acylazolium chloride [(C6H5C(O))OCMe2CH2(1-C(C6H5C (O)){NCHCHNiPr})]Cl 18 and CeCl3. When [Ce(LiPr)3] was added to a mixture of benzaldehyde and benzyl chloride, as a coupling catalyst, the complex decomposed. [Ce(LiPr)4] was tested as a catalyst from the benzoin condensation and for the coupling of benzalehyde and benzyl chloride, however, it resulted in the decomposition of [Ce(LiPr)4]. Chapter four also outlines the catalytic activity of 3. The complex showed no reactivity as a hydrogenation catalyst towards alkenes, aldehydes or ketones but did display reactivity as a hydroboration catalyst for alkenes, aldehydes or ketones. Chapter five presents the conclusions for chapters two to four. The final chapter contains the experimental details from the previous chapters.
3

Mechanistic studies of azolium ions and their role in organocatalysis

Collett, Christopher J. January 2013 (has links)
This thesis describes our physical organic and mechanistic investigations into N Heterocyclic Carbene (NHC) mediated organocatalytic transformations, through a collaboration with the research group of Dr AnnMarie O'Donoghue and PhD student Richard Massey at Durham University. Initial research focused upon the determination of kinetic acidities and associated pKₐ values for a range of triazolium salts using C(3) H/D exchange, monitored by ¹H NMR spectroscopy. Estimates for pKₐ values in the range 16.6 17.4 were obtained, which are some ~2 and ~3 5 pK units lower than analogous imidazolium and thiazolium species respectively, with modest N substituent (0.3 pK units) effects observed. At lower pD values, an altered pD dependence indicates a dicationic triazolium species is formed (through N(1) protonation) with an estimated pKₐᴺ¹ of -0.2-0.5 and C(3) H pKₐ values at least 2 units lower than their monocationic analogues. This methodology was subsequently extended to mesoionic NHCs, where pKa values of 23.0 27.1 for a range of triazolium and 30.2 31.0 for a range of imidazolium salts were estimated. A detailed study of the NHC catalysed intramolecular Stetter reaction was also undertaken using ¹H NMR spectroscopy. A range of 3 (hydroxybenzyl)azolium salts (adducts), formed from the addition of NHC to aldehyde were isolated, enabling the generation of reaction profiles and the determination of rate constants. The reaction proceeds via rapid and reversible adduct generation, followed by rate limiting Breslow intermediate formation, with electron withdrawing N aryl substituents increasing the rate of product formation. Consistent with rate limiting deprotonation, deuterium exchange studies of O methylated adduct analogues found electron withdrawing N-aryl units gave faster exchange. Examination of the equilibrium constants for adduct formation revealed that both in the case of NHCs bearing 2,6 disubstituted N aryl units and aldehydes bearing a 2 ether substituent, the equilibrium position is significantly shifted towards adduct. Finally, studies at sub-stoichiometric NHC concentrations, monitored by HPLC, imply the reaction is first order with respect to NHC precursor, but zero order in aldehyde, again indicative of rate limiting deprotonation.
4

Lewis base-promoted organocatalysis : O- to C-carboxyl transfer reactions

Campbell, Craig D. January 2010 (has links)
This work describes the application of a variety of Lewis bases, encompassing predominantly N-heterocyclic carbenes (NHCs), but also the use of imidazoles, aminopyridines, amidines and isothioureas, as effective catalysts in the dearomatisation of heterocyclic carbonates, predominantly the rearrangement of oxazolyl carbonates to their C-carboxyazlactone isomers by means of the Steglich rearrangement. This rearrangement reaction has been investigated extensively, with the development of simplified reaction procedures and the invention of domino cascade protocols incorporating this transformation. In an attempt to understand the mechanism of this O- to C-carboxylation process, a number of interesting observations have been made. Firstly, the class of NHC has an important factor in promoting the rearrangement, with triazolinylidenes being the most effective. Secondly, an interesting chemoselectivity has been delineated using triazolium-derived NHCs, prepared using weak bases (typically Et₃N) or strong metallated bases; both alkyl and aryl oxazolyl carbonates undergo smooth rearrangement with triazolinylidenes derived from strong metallated bases such as KHMDS, while only aryl oxazolyl carbonates undergo rearrangement using Et₃N. Extensive effort has focused towards the development of asymmetric variants of these protocols, primarily towards the design, synthesis and evaluation of chiral NHC precatalysts. To this end, a number of chiral azolium salts have been prepared, encompassing a number of different NHC classes, including C₁- and C₂-imidazolinium salts, C₂-imidazolium salts and a range of triazolium salts. Efforts towards the asymmetric catalysis of the Steglich rearrangement of oxazolyl carbonate substrates have given an optimal 66% ee. Similar rearrangements have been demonstrated with the related furanyl heterocyclic substrate class, producing a mixture of α- and γ-carboxybutenolides. In contrast to the analogous oxazolyl carbonates, the regioselectivity of this rearrangement is dependent upon the nature of the Lewis base employed. Amidines and aminopyridines give a mixture of the α- and γ- regioisomers with generally the α-regioisomer being preferred, while a triazolium-derived NHC gives rise to predominantly the thermodynamically more stable γ-carboxybutenolide. Using amidines or aminopyridines, this rearrangement has been shown to proceed via an irreversible C-C bond-forming process, but in contrast, the rearrangement using the NHC proceeds via an equilibrium process with an optimised regioselectivity of >98:2 for the γ-carboxybutenolide regioisomer over the α-regioisomer. Whilst the asymmetric variant using chiral NHCs has proven unfruitful, rearrangements using a chiral isothiourea have given high levels of regioselectivity towards the α- regioisomer and with excellent levels of enantiodiscrimination (77–95% ee).
5

NHC portant des azotures : intermédiaires dans la synthèse catalysée d‘hétérocycles polyazotés et auto-fonctionnalisation de complexes métal-NHC / Azide tagged NHC : intermediates in the catalysed synthesis of nitrogen rich heterocycles and auto-functionalization of metal-NHC complexes

Fauché, Kévin 13 December 2018 (has links)
Les carbènes N-hétérocycliques (NHC) sont très utilisés pour complexer les métaux de transition. Ils quittent rarement ce rôle de ligand ancillaire et trouvent, depuis une vingtaine d’années, des applications en catalyse ou, plus récemment, en chimie médicinale. Dans ce travail, nous discuterons d’une méthode de synthèse douce conduisant à la formation de complexes AgI – NHC via une source d’argent soluble. Cette méthode nous a permis d’obtenir des complexes bien connus mais également d’accéder à une nouvelle série de complexes NHC-Ag-phosphine. Nous présenterons également une nouvelle réaction où des NHC portant une fonction azoture à proximité du carbone du carbène quittent leur rôle de ligand ancillaire et conduisent à la formation d’hétérocycles azotés par cyclisation carbène-nitrène. Cette réaction sera présentée en détail, ainsi que la caractérisation spectroscopique concernant une sous-série de composés fluorescents obtenus par cette méthode. Enfin, nous présenterons une stratégie de post-fonctionnalisation de complexes développée dans notre équipe. Des complexes argent(I)-NHC portant un azoture proches du centre carbénique catalysent leur propre fonctionnalisation. De plus, des complexes de cuivre(I) portant des azotures en position éloignée du centre métallique seront greffés sur des nanoparticules magnétiques pour servir de catalyseur recyclables. / N-heterocyclic carbenes (NHC) are widely used to complex transition metals. They rarely leave their role as ancillary ligand and find, since 20 years, applications in catalysis or, more recently, in medicinal chemistry. In this work, we will discuss a mild synthetic method leading to the formation of AgI – NHC complexes via a soluble silver species. This method allowed us to obtain well known complexes but also to access a new series of NHC-Ag-phosphine complexes. We will also present a new reaction where NHC ligands bearing an azide function close to the carbenic center leave their role as ancillary ligand and lead to the formation of nitrogen rich heterocycles by a carbene-nitrene cyclization. This reaction will be presented in detail, along with the spectroscopic characterization regarding a sub-series of fluorescent compounds obtained by this method. Finally, we will present a post-functionalization strategy of complexes developed in our team. Silver(I)-NHC complexes tagged by an azide close to the carbenic center catalysed their own functionalization. Moreover, copper(I) complexes tagged by an azide function in a distant position from the metallic centre will be grafted on magnetic nanoparticles to act as recyclable catalysts.
6

Dicarbenes as bridges in mixed-metal systems

Zamora, Matthew Thomas Unknown Date
No description available.
7

Metallocarbenes for therapeutic applications / Métallocarbènes pour des applications thérapeutiques

Dahm, Georges 09 December 2014 (has links)
Les complexes métalliques des carbènes N-hétérocycliques (NHC) présentent un grand potentiel comme anticancéreux. En particulier, des études in vitro ont confirmés une cytotoxicité supérieure au cisplatine. Dans ce travail, nous avons introduit de la diversité moléculaire à de nouveaux complexes NHC-Pt par coordination de différents ligands NHC. Une deuxième stratégie, la post-fonctionnalisation de complexes de Pt a été étudié par : a) formation d’oxime, notamment avec une urée ciblant le PSMA, b) échange de ligand avec des polyamines hydrosolubles (PEI) ou des pnictogènes (phosphines, arsines, stibines), c) échange d’halogène avec des isotopes de l’iode. Les propriétés cytotoxiques de ces composés ont été évaluées in vitro. In vivo (souris), un complexe PEI-Pt montre une inhibition tumorale similaire à l’oxaliplatine. Néanmoins, aucun effet secondaire n’a été détecté contrairement à l’oxaliplatine (hématomes). Ces résultats ouvrent de nouvelles perspectives dans le domaine des anticancéreux sur la base de platine. / Metal N-Heterocyclic Carbene (NHC) complexes are of great potential for cancer therapy. In particular, in vitro studies confirmed their significantly higher cytotoxicity than cisplatin. In this work, we introduced molecular diversity on new NHC-Pt complexes by coordination of various NHC precursors to platinum. As a second strategy, post-synthetic functionalization of Pt complexes has been fully investigated by: a) oxime formation, e.g. with a PSMA targeting urea derivative, b) ligand exchange reaction with hydrosoluble polyamines (PEI) and pnictogen-based ligands (phosphines, arsines, stibines), c) halogen exchange with iodide isotopesCytotoxic properties of these new compounds were evaluated in vitro. Best candidate was selected for in vivo evaluation on mice model showing for PEI-Pt similar tumour inhibition as oxaliplatin. Besides, no “visual” side effects were detected in contrast to oxaliplatin (hematomas). These outstanding results opened up new perspectives in the field of platinum-based drugs.
8

Synthèse et réactivité de nouveaux complexes des métaux du groupe 13 portés par des ligands carbènes N-hétérocycliques / Synthesis and reactivity of group 13 metals complexes supported by N-heterocyclic carbenes

Schnee, Gilles 15 November 2012 (has links)
Au début de ces travaux, peu d’études avaient été faites sur la complexation des carbènes N-hétérocycliques avec des métaux oxophiles, électropositifs et à hauts degrés d’oxydation tel que les métaux du groupe 13. L’optimisation de voies de synthèse a permis d’étendre le nombre de complexes de types NHC-MIII (M = aluminium, gallium et indium), ainsi qu’à des complexes cationiques. L’association de ces précurseurs avec des NHCs plus encombrés a permis l’observation de réactivités sans précédent (complexes anormaux, paires de Lewis frustrées, dicarbènes N-hétérocycliques). Dans un second temps, la réactivité inhabituelle des ligands NHCs a permis l’isolation d’analogue au réactif de Tebbe, très actifs en méthylénation de dérivés carbonyles. / At the beginning of this work, few studies had been performed on the complexation of N-heterocyclic carbenes with oxophilic metals, in high oxidation states such as group 13 metals. The synthetic routes optimization has extended the number of complexes-type NHC-MIII (M = aluminum, gallium and indium), and the corresponding cationic complexes. The combination of these precursors with sterically congested NHCs allowed the observation of unprecedented reactivities (abnormal complexes, Frustrated Lewis Pairs, N-heterocyclic dicarbenes). In a second step, the unusual reactivity of NHC ligands has allowed the isolation of analogues of the Tebbe’s reagent, formed to be very active in the methylenation of carbonyl compounds.

Page generated in 0.1003 seconds