Spelling suggestions: "subject:"laplaciano."" "subject:"plaplaciano.""
1 |
Sobre Soluções de Equações Elípticas Envolvendo o N-Laplaciano e Crescimento Crítico ExponencialAraújo, Gustavo da Silva 08 March 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:12Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1062540 bytes, checksum: 59af76713b0f39a5f68815eb132bc18e (MD5)
Previous issue date: 2013-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study existence, multiplicity and nonexistence of positive solutions,
with respect to a positive parameter , for a class of quasilinear elliptic problems in
bounded domains of RN, N 2, involving the N-laplacian operator and a nonlinearity
f(t) which behaves as t, for some 2 (0;N1), when t ! 0+ and has critical exponential
growth of Trudinger-Moser type at +1. In order to obtain the results, we have used
minimax theorems, sub and supersolution methods and a refinement of the Trudinger-
Moser inequality due to P.-L. Lions. / Neste trabalho, estudamos existência, multiplicidade e não-existência de soluções
positivas, com respeito a um parâmetro positivo , para uma classe de problemas elípticos
quasilineares em domínios limitados de RN, N 2, envolvendo o operador N-laplaciano
e uma não-linearidade f(t) que se comporta como tá, para algum 2 (0;N 1), quando
t ! 0+ e possui crescimento crítico exponencial do tipo Trudinger-Moser em +1. Na
obtenção dos resultados, podemos destacar a utilização de teoremas do tipo minimax, métodos de sub e supersolução e um refinamento da Desigualdade de Trudinger-Moser devido a P.-L. Lions.
|
2 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthFreitas, Luciana Roze de 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
3 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthLuciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
Page generated in 0.0337 seconds