• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRPA1- FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p

Berrout, J., Kyriakopoulou, E., Moparthi, L., Hogea, A.S., Berrout, L., Ivan, C., Lorger, M., Boyle, J., Peers, C., Muench, S., Elies, Jacobo, Hu, X., Hurst, C., Hall, T., Umamaheswaran, S., Wesley, L., Gagea, M., Shires, M., Manfield, I., Knowles, M.A., Davies, S., Suhling, K., Gonzalez, Y.T., Carragher, N., Macleod, K., Abbott, N.J., Calin, G.A., Gamper, N., Zygmunt, P.M., Timsah, Z. 2017 October 1916 (has links)
Yes / Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD) where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline rich motif. Here, we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2 hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p. / Faculty of Biological Sciences at the University of Leeds, Wellcome Trust Seed Award, Royal Society Research Grant RG150100, MR/K021303/1, Swedish Research Council (2014-3801) and the Medical Faculty at Lund University.

Page generated in 0.0901 seconds