• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BZIP Transcription Factors BATF and c-Maf are Essential for Type-2 Inflammation

Bao, Katherine January 2016 (has links)
<p>Helminth exposure, allergy and asthma each induce cellular responses in lymphoid and peripheral tissues that give rise to type-2 inflammation. Essential molecular mediators of this response are type-2 cytokines interleukin(IL)-4 and IL-13 derived from various subsets of immune cells. In lymphoid tissues, CD4+ Tfh cells make IL-4 to elicit IgE and high-affinity IgG1 production. In peripheral sites of infection, group 2 innate lymphoid (ILC2) cells make IL-13 and Th2 cells make both IL-13 and IL-4. Together, these cells mediate smooth muscle contraction, mucus production and recruitment of other innate effector cells, all of which are hallmarks of type-2 inflammation. As central mediators of type-2 inflammation, understanding the cell-specific expression and molecular regulation of type-2 cytokines in CD4+ T cells and ILC2 cells may lead to new therapies that ameliorate allergic disease and helminth infections. </p><p>The AP-1 factor basic leucine zipper transcription factor ATF-like (BATF) has been identified as a pioneer factor in in vitro-generated Th17 cells. BATF facilitates chromatin remodeling at the IL-17 locus as well as loci of key Th17-associated lineage specifying factors. It has also been deemed essential to the generation of functional humoral immunity through the development of follicular helper T (Tfh) cells and germinal center B cells. However, the role of BATF in the development and function of other CD4+ T helper subsets and innate immune cells in vivo has remained unclear. I show here that mice deficient in BATF do not develop type-2 inflammation after exposure to the parasitic helminth Nippostongylus brasiliensis. Since type-2 cytokine expression by Th2 and ILC2 cells is essential for expedient helminth expulsion, I hypothesized that BATF likely has a role in the development and/or induction of cytokine expression in CD4+ Th2 cells and ILC2 cells. Consistent with this hypothesis, I found that BATF utilizes a novel mechanism to control Th2 cytokine expression in Th2 cells. Specifically, BATF promotes permissive epigenetic modifications to alter the chromatin landscape early during Th2 cell differentiation. In addition, my data show that BATF deficiency inhibits the activation of ILC2 cells, preventing ILC2-mediated helminth clearance. </p><p>In addition to uncovering BATF-mediated regulations of type-2 inflammation, my work has revealed new insight into the role of a second bZIP transcription factor, cMaf, during type-2 immunity. As mentioned above, helminth exposure elicits IL-4 production by both CD4+ Tfh and Th2 cells. Although type-2 cytokine transcription has been well characterized in Th2 cells, Tfh cell-mediated IL-4 production has yet to be fully defined. Importantly, I show that IL-4 production by Tfh cells is sustained upon deletion of classical IL-4 regulatory factors signal transducer and activator of transcription 6 (STAT6) and STAT5 and is not dependent on high GATA-3 expression. In sum, Tfh-driven IL-4 production is induced independent of classical pathways in Th2 cells. </p><p>Presently, the non-canonical transcription factors involved in IL-4 production by Tfh cells remain unclear. C-Maf works with BCL6, the master regulator of Tfh cells, to elicit Tfh formation. However, the precise role of c-Maf in Tfh cell fate and function remains unclear. So far, it has been shown that in Th2 cells, c-Maf binds to the IL-4 promoter and in Tfh cells, c-Maf binds to the CNS2 enhancer of the IL-4 locus to regulate IL-4 expression. Therefore, I hypothesized that c-Maf is important in non-canonical, GATA-3-independent IL-4 production by Tfh cells. </p><p>Here, I show that Tfh cells lacking canonical Th2 pathways for IL-4 expression express high levels of c-Maf and IL-4 transcript. Deletion of c-Maf in CD4+ T cells resulted in normal induction of BCL6 expression. Thus the initial stages of Tfh cell generation were induced. However, cMaf-deficient CD4+ T cells did not express important molecules associated with Tfh cell migration. Immunohistochemistry also confirmed that c-Maf deficiency inhibited CD4+ T cell migration from the paracortex into the B cell follicle. </p><p>These defects did not inhibit cMaf-deficient CD4+ T cells from making IL-4 transcript; however, IL-4 protein production was significantly impaired. Together, these results demonstrate that c-Maf is essential for Tfh cell-mediated immunity by promoting CD4+ T cell migration to the B cell follicles and the production of IL-4 protein in the germinal centers. </p><p>Collectively, the objective of my thesis research is to define the roles of the bZIP transcription factors BATF and c-Maf in type-2 inflammation. My data demonstrate that BATF is essential for the differentiation and function of Tfh, Th2, and ILC2 cells during helminth infection. Additionally, I have shown that c-Maf is required for Tfh function and CD4+ T cell migration to the B cell follicle. Thus, BATF and c-Maf are central to the development of humoral and peripheral type-2 inflammatory responses against helminth infection. Given the wide spectrum of disorders associated with type-2 inflammation, the identification of factors relevant to the development and function of Th2-, ILC2- and Tfh-driven allergic pathologies is broadly relevant. A comprehensive characterization of core factors like BATF and c-Maf provide new avenues in which to explore novel therapies to modulate type-2 inflammatory responses.</p> / Dissertation
2

Nutritional regulation of resistance to Nippostrongylus brasiliensis in the lactating rat

Masuda, Aya January 2017 (has links)
Animals acquire immunity against gastrointestinal (GI) nematode infection depending on their age and continual exposure to larvae, however, expression of this acquired immunity is often penalized during pregnancy and lactating period. This is described as periparturient relaxation in immunity (PPRI), and suggested to have nutritional basis. Although dietary protein has positive effect on immunity against GI nematode infection in mammalian host, we have not fully achieved to characterise the detailed interaction between PPRI and dietary protein. Therefore, this PhD aimed to further investigate this interaction in a well-established Nippostrongylus brasiliensis re-infected lactating rat model. Feeding high protein diet (HP) as opposed to low protein diet (LP) during pregnancy was necessary in maintaining sufficient maternal performances and systemic immune response (Chapter 2 and 3). Accumulation of host’s body protein reserve during pregnancy was significantly higher in HP fed animals compared to LP fed counterparts, which led to improvement in both maternal performances and immunity during the early stage of lactation. However, as lactation period progressed and re-infection of N. brasiliensis took place, importance of current dietary status, rather than the accumulated protein reserve, became evident for maternal performances and immunity. Indeed, animals fed HP during lactation showed significantly heavier pup weight compared to LP fed animals; HP animals showed higher serum immunoglobulin levels and reduced worm burden compared to LP. N. brasiliensis, however, goes through systemic migration, entering host’s skin and migrating to lung parenchyma through blood vessels before reaching the intestine. In Chapter 4, a detailed lung pathology study following N. brasiliensis infection was performed to generate data on the effects of the nematode in the lung of the rat host as such data were scarce. Rat host showed similar lung pathology to that of mice; up-regulation of genes related to type 2 immunity and development of emphysema-like pathology were observed following N. brasiliensis re-infection. In Chapter 5, the effect of dietary protein supplementation on lung and intestinal histology and gene expression analysis was investigated. It was shown that HP fed animals showed higher expression of genes related to type 2 immunity compared to LP in the lung. This effect of protein supplementation in the lung may have contributed to fewer worm burdens in HP fed rats compared to LP in the intestine. Dietary protein supplementation significantly affected the expression of genes related to goblet cells; it resulted in up-regulation of the expression of Retnlb and down-regulation of Agr2 and Tff3 in HP fed animals compared to LP. It is evident that dietary protein is modulating intestinal immunity, and this may be targeted towards specific pathways. In addition, the effect of dietary protein supplementation on immune cell populations of secondary lymphoid organs was analysed. Marked increase in the percentage of macrophage in the spleen and T cell in the mesenteric lymph node was observed following protein supplementation, highlighting the importance of dietary protein on systemic immunity during the parasite infection. These results demonstrate that dietary protein supplementation is effective for improving both maternal performances and immune responses, not only at the intestinal phase but also at the migrating phase, when animal is undergoing PPRI during N. brasiliensis infection. Such information is expected to define strategic utilisation of nutrient supply and to result in development of sustainable parasite control strategies in mammals.
3

Avaliação do potencial antimalárico de Norantea brasiliensis Choisy (Marcgraviaceae) cultivada in vitro e in vivo / Evaluation of potential antimalarial of Norantea brasiliensis choisy (Marcgraviaceae) grown in vitro and in vivo

Graziela da Silva Mello 28 February 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium, transmitidos ao homem, principalmente, através da picada do mosquito infectado. O tratamento é realizado por meio do uso de drogas, como a cloroquina, uma vez que não há vacina eficiente contra a doença. Porém, a resistência dos parasitos aos medicamentos tem levado à busca por novas substâncias com atividade antimalárica, inclusive de origem vegetal. Nesse contexto, o presente trabalho teve por objetivo avaliar a atividade antimalárica de extratos metanólicos de Norantea brasiliensis cultivada sob condições in vivo e in vitro, espécie nativa ocorrente em restingas, com potencial medicinal já comprovado para várias atividades. Foram desenvolvidos protocolos de calogênese e cultura de raízes da espécie visando à definição de um sistema de produção de metabólitos. Para a cultura in vitro, explantes foram inoculados em meio líquido e sólido contendo diferentes fitorreguladores e concentrações. A partir da cultura de tecidos, foram testados extratos do material produzido biotecnologicamente para comparação com o material botânico cultivado no campo. Os testes sobre o potencial antimalárico foram realizados in vivo, utilizando-se camundongos infectados pelo Plasmodium berghei ANKA, e in vitro utilizando o Plasmodium falciparum. Em seguida foram administrados a cloroquina e os extratos vegetais. A parasitemia foi observada seguindo os protocolos já estabelecidos pelo Laboratório de Imunofarmacologia do Instituto Oswaldo Cruz (IOC). Resultados mostraram que explantes foliares e caulinares de plantas germinadas in vitro, inoculados em meio sólido B5 suplementado com 2,0 mg.mL-1 de ANA, são as melhores fontes para a produção de raízes, apresentando maiores valores de peso fresco e peso seco, mostrando-se um sistema promissor para a produção in vitro de metabólitos da espécie. A avaliação da atividade antimalárica in vivo revelou seu potencial a partir de extrato de raízes de planta cultivada in vivo, na concentração de 50 mg/kg apresentando redução significativa da parasitemia quando comparada com o controle não tratado. Paralelamente, nos testes in vitro a concentração de 100 &#956;g/kg do extrato de raízes de planta cultivada in vivo apresentou diferença significativa quando comparada com as outras concentrações testadas e o controle negativo. Além disso, há uma tendência de aumento do efeito inibitório conforme o aumento da concentração do extrato. Os resultados indicam o potencial de atividade antimalárica em raízes de N. brasiliensis, sendo este estudo o primeiro realizado para a espécie / Malaria is an infectious disease caused by protozoa of the genus Plasmodium, transmitted to humans primarily through the bite of an infected mosquito. The treatment is accomplished through the use of drugs such as chloroquine, since there is no effective vaccine against the disease. However, the resistance of parasites to drugs has led to the search for new antimalarial substances, including vegetable. In this context, this study aimed to evaluate the antimalarial activity of methanol extracts of Norantea brasiliensis grown under conditions in vivo and in vitro, native species occurring in salt marshes, with proven medicinal potential for various activities. Protocols were developed callus and culture of roots of species in order to define a system for production of metabolites. For in vitro culture, explants were inoculated in liquid and solid media containing different growth regulators and concentrations. From the tissue culture material were tested extracts biotechnologically produced for comparison with plant material grown in the field. Tests on the potential in vivo antimalarial were performed using mice were infected by Plasmodium berghei ANKA, and in vitro using the Plasmodium falciparum. They were then administered chloroquine and plant extracts. The parasitemia was observed following the protocols established by the Laboratory of Immunopharmacology of the Oswaldo Cruz Institute (IOC). Results showed that stem and leaf explants of in vitro germinated seedlings were inoculated on B5 solid medium supplemented with 2.0 mg.mL-1 ANA, are the best sources for the production of roots, with highest values of fresh weight and dry weight and proved to be a promising system for in vitro production of metabolites of the species. The assessment of antimalarial activity in vivo has shown its potential to extract from plant roots grown in vivo at a concentration of 50 mg/kg showing significant reduction of parasitemia when compared with the untreated control. Similarly, in in vitro tests the concentration of 100 &#956;g/kg of extract of roots of plants grown in vivo showed a significant difference when compared with other tested concentrations and negative control. Furthermore, there is a tendency to increase the inhibitory effect with increasing extract concentration. The results indicate the potential for antimalarial activity in roots of N. brasiliensis, which is the first study conducted for the species.
4

Avaliação do potencial antimalárico de Norantea brasiliensis Choisy (Marcgraviaceae) cultivada in vitro e in vivo / Evaluation of potential antimalarial of Norantea brasiliensis choisy (Marcgraviaceae) grown in vitro and in vivo

Graziela da Silva Mello 28 February 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium, transmitidos ao homem, principalmente, através da picada do mosquito infectado. O tratamento é realizado por meio do uso de drogas, como a cloroquina, uma vez que não há vacina eficiente contra a doença. Porém, a resistência dos parasitos aos medicamentos tem levado à busca por novas substâncias com atividade antimalárica, inclusive de origem vegetal. Nesse contexto, o presente trabalho teve por objetivo avaliar a atividade antimalárica de extratos metanólicos de Norantea brasiliensis cultivada sob condições in vivo e in vitro, espécie nativa ocorrente em restingas, com potencial medicinal já comprovado para várias atividades. Foram desenvolvidos protocolos de calogênese e cultura de raízes da espécie visando à definição de um sistema de produção de metabólitos. Para a cultura in vitro, explantes foram inoculados em meio líquido e sólido contendo diferentes fitorreguladores e concentrações. A partir da cultura de tecidos, foram testados extratos do material produzido biotecnologicamente para comparação com o material botânico cultivado no campo. Os testes sobre o potencial antimalárico foram realizados in vivo, utilizando-se camundongos infectados pelo Plasmodium berghei ANKA, e in vitro utilizando o Plasmodium falciparum. Em seguida foram administrados a cloroquina e os extratos vegetais. A parasitemia foi observada seguindo os protocolos já estabelecidos pelo Laboratório de Imunofarmacologia do Instituto Oswaldo Cruz (IOC). Resultados mostraram que explantes foliares e caulinares de plantas germinadas in vitro, inoculados em meio sólido B5 suplementado com 2,0 mg.mL-1 de ANA, são as melhores fontes para a produção de raízes, apresentando maiores valores de peso fresco e peso seco, mostrando-se um sistema promissor para a produção in vitro de metabólitos da espécie. A avaliação da atividade antimalárica in vivo revelou seu potencial a partir de extrato de raízes de planta cultivada in vivo, na concentração de 50 mg/kg apresentando redução significativa da parasitemia quando comparada com o controle não tratado. Paralelamente, nos testes in vitro a concentração de 100 &#956;g/kg do extrato de raízes de planta cultivada in vivo apresentou diferença significativa quando comparada com as outras concentrações testadas e o controle negativo. Além disso, há uma tendência de aumento do efeito inibitório conforme o aumento da concentração do extrato. Os resultados indicam o potencial de atividade antimalárica em raízes de N. brasiliensis, sendo este estudo o primeiro realizado para a espécie / Malaria is an infectious disease caused by protozoa of the genus Plasmodium, transmitted to humans primarily through the bite of an infected mosquito. The treatment is accomplished through the use of drugs such as chloroquine, since there is no effective vaccine against the disease. However, the resistance of parasites to drugs has led to the search for new antimalarial substances, including vegetable. In this context, this study aimed to evaluate the antimalarial activity of methanol extracts of Norantea brasiliensis grown under conditions in vivo and in vitro, native species occurring in salt marshes, with proven medicinal potential for various activities. Protocols were developed callus and culture of roots of species in order to define a system for production of metabolites. For in vitro culture, explants were inoculated in liquid and solid media containing different growth regulators and concentrations. From the tissue culture material were tested extracts biotechnologically produced for comparison with plant material grown in the field. Tests on the potential in vivo antimalarial were performed using mice were infected by Plasmodium berghei ANKA, and in vitro using the Plasmodium falciparum. They were then administered chloroquine and plant extracts. The parasitemia was observed following the protocols established by the Laboratory of Immunopharmacology of the Oswaldo Cruz Institute (IOC). Results showed that stem and leaf explants of in vitro germinated seedlings were inoculated on B5 solid medium supplemented with 2.0 mg.mL-1 ANA, are the best sources for the production of roots, with highest values of fresh weight and dry weight and proved to be a promising system for in vitro production of metabolites of the species. The assessment of antimalarial activity in vivo has shown its potential to extract from plant roots grown in vivo at a concentration of 50 mg/kg showing significant reduction of parasitemia when compared with the untreated control. Similarly, in in vitro tests the concentration of 100 &#956;g/kg of extract of roots of plants grown in vivo showed a significant difference when compared with other tested concentrations and negative control. Furthermore, there is a tendency to increase the inhibitory effect with increasing extract concentration. The results indicate the potential for antimalarial activity in roots of N. brasiliensis, which is the first study conducted for the species.

Page generated in 0.0652 seconds