• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 643
  • 114
  • 101
  • 100
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 56
  • 52
  • 51
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Produção e caracterização de nanofibras de quitosana com nanocristais de celulose para aplicações biomédicas / Production and characterization of chitosan nanofibers with cellulose nanocrystals for biomedical applications

Ridolfi, Daniela Missiani, 1985- 26 August 2018 (has links)
Orientador: Nelson Eduardo Durán Caballero / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T20:45:34Z (GMT). No. of bitstreams: 1 Ridolfi_DanielaMissiani_D.pdf: 3264748 bytes, checksum: faea0a4fec50e345e79d3072a773bb48 (MD5) Previous issue date: 2014 / Resumo: Neste trabalho nanofibras de quitosana/poli (óxido de etileno) (PEO) (5:1) com nanocristais de celulose (NCC) foram produzidas com sucesso por eletrofiação e foi verificado o efeito da adição dos NCC nas propriedades das nanofibras obtidas. Os ensaios de eletrofiação foram realizados com amostras de NCC obtidas por hidrólise ácida. A eletrofiação de soluções de quitosana, sem e com NCC, resultaram na formação de muitas gotas (beads). Portanto, foi necessário adicionar o PEO nas soluções. Embora a adição de PEO tenha favorecido a formação de fibras, as soluções de quitosana/PEO sem NCC geraram também gotas enquanto que as soluções de quitosana/PEO contendo NCC resultaram em fibras uniformes. As soluções de quitosana/PEO com NCC apresentaram maior viscosidade em relação à solução sem NCC, o que pode ter favorecido a formação de fibras uniformes. As soluções de quitosana/PEO contendo 10% (m/m) de NCC produziram fibras mais finas em relação às soluções com 5% (m/m) de NCC provavelmente devido à maior condutividade da solução. Análises termogravimétricas mostraram que os NCC interferem na decomposição do PEO, mas sem prejudicar o desempenho do material. As nanofibras de quitosana/PEO contendo NCC apresentaram menor cristalinidade em relação às nanofibras sem NCC. Resultados de ensaios com células em culturas de fibroblastos 3T3 mostraram que as nanofibras de quitosana/PEO (com 10% de NCC) promoveram a adesão celular e mantiveram a morfologia celular característica o que sugere um potencial dessas nanofibras para aplicações em engenharia de tecidos / Abstract: In this work chitosan/ poly (ethylene oxide) (PEO) (5:1) nanofibers with cellulose nanocrystals (CNC) were successfully produced by the electrospinning technique and the effect of the addition of CNC on the nanofibers properties was evaluated. The electrospinning assays were performed with samples of CNC obtained by acid hydrolysis. The electrospinning of chitosan solutions, with and without CNC, resulted in the formation of many drops (beads). Therefore, it was necessary to add PEO on solutions. Although the PEO addition has favored the fiber formation, the chitosan/PEO solutions without CNC showed beads while chitosan/PEO solutions with CNC resulted in uniform fibers. The chitosan/PEO solutions with CNC showed higher viscosity compared to the solution without CNC, which may have favored the formation of uniform fibers. Solutions of chitosan/PEO containing 10% (w/w) of CNC produced thinner fibers compared to solutions containing 5% (w/w) of CNC probably due the higher solution conductivity. Thermogravimetric analysis (TGA) showed that the CNC has an effect on the PEO decomposition, however, it does not impair the performance of the material. The chitosan/PEO nanofibers with CNC showed lower crystallinity compared the nanofibers without CNC. Results from cell assay in cultures of 3T3 fibroblasts showed that the chitosana/PEO nanofibers (with 10% of CNC) promoted cell attachment and maintained the characteristic cell morphology which suggests potential applications of these nanofibers in cell tissue engineering / Doutorado / Físico-Química / Doutora em Ciências
232

Non-Thermal Plasma Synthesis of Luminescent Silicon Nanocrystals from Cylclohexasilane

Pringle, Todd Andrew January 2019 (has links)
In this report we establish cyclohexasilane (CHS) as a reliable precursor for non-thermal plasma synthesis of high quality photoluminescent silicon nanocrystals (SiNCs). We demonstrate that this synthesis approach can produce high quality, size tunable silicon quantum dots with quantum yields exceeding 60% as synthesized (subsequent work in our group has measured over 70% quantum yield after density gradient ultracentrifugation size purification).After a brief background on non-thermal plasma synthesis, the characterization methods used in this study, and an overview of CHS, we report at length on our development of the apparatus used, and our exploration of the controllable processing parameters of the synthesis method. We describe our successes and challenges with size tuning, sample collection, and passivation. Finally, we discuss preliminary studies we performed to identify promising future research areas. Novel reactor designs, blue light passivation, and magnetic confinement of plasma are described briefly to entice future researchers.
233

Quantum Confinement Beyond the Exciton Bhor Radius in Quantum Dot Nanoshells

Harankahage, Dulanjan Padmajith Dharmasena 12 August 2020 (has links)
No description available.
234

Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát / The deposition of Ga and GaN nanostructures on silicon and graphene substrate

Novák, Jakub January 2021 (has links)
The thesis is focused on the study of properties of GaN nanocrystals and Ga structures on the surface of silicon and graphene substrate. In the theoretical part of this thesis, the basic properties of Ga/GaN and graphene are described, as well as their applications or connection of both structures together in different devices. The ability of metal nanoparticles to enhance not only photoluminescence, due to the interaction of the material with surface plasmons, is also shown in several examples. The experimental part of the work first deals with the production and characterization of graphene sheets prepared by Chemical Vapor Deposition. Ga/GaN growth on both types of substrates was performed in a UHV chamber using an effusion cell for Ga deposition and an atomic ion source for nitridation. Prepared structures were characterized using various methods (XPS, SEM, AFM, Raman spectroscopy or photoluminescence). In the last step, GaN nanocrystals were coated with Ga islands to study the photoluminescence enhancement.
235

Studium polovodičů metodami časově rozlišené laserové spektroskopie: Luminiscenční spektroskopie nanokrystalického diamantu / Study of semiconductors by methods of laser spectroscopy

Dzurňák, Branislav January 2012 (has links)
Title: Study of semiconductors by methods of time resolved laser spectroscopy: Luminescence spectroscopy of nanocrystalline diamond Author: Branislav Dzurňák Department: Department of Chemical Physics and Optics Supervisor: doc. RNDr. František Trojánek, Ph.D. Abstract: The PhD thesis is focused on optical properties of nanocrystalline diamond prepared by chemical vapour deposition method. Photoluminescence of nanocrystalline diamond samples and effects of ambient temperature, pressure, pH and UV irradiation on it are studied by laser spectroscopy. Results suggest the keyrole of water and air adsorbates which affect the energy states in the sub-bandgap region of diamond. Photoluminescence decay of samples of different surface termination and structure and its dependency on ambient pressure and temperature is studied by methods of ultrafast (picosecond and nanosecond scale) laser spectroscopy. Results are analysed by power-law decay function which fits well the luminescence decay curves and also describes the dynamics of charge carriers in states localised within the bandgap. The model of interaction of nanocrystalline diamond with air adsorbates is proposed. Non-linear optical properties of nanocrystalline diamond are also studied, namely the generation of second and third harmonic frequency. The thesis...
236

Optické vlastnosti křemíkových nanostruktur pro fotovoltaiku / Optical properties of silicon nanostructures for photovoltaics

Salava, Jan January 2013 (has links)
Název práce: Optické vlastnosti křemíkových nanostruktur pro fotovoltaiku Autor: Bc. Jan Salava Katedra: Katedra chemické fyziky a optiky Vedoucí diplomové práce: doc. RNDr. František Trojánek, Ph.D., katedra chemické fyziky a optiky Abstrakt: V předložené práci jsou studovány křemíkové nanokrystaly umístěné v SiC matrici - jednotlivé vzorky se odlišují přidáním dopantu (boru) do příslušné vrstvy struktury během depozice metodou PECVD a pasivací vodíkem. Křemíkové nanokrystaly jsou významné zejména tím, že oproti své objemové verzi vykazují účinnou fotoluminiscenci a absorpci ve viditelné oblasti spektra. Změnami parametr· při přípravě lze ladit jejich vlastnosti s ohledem na konkrétní aplikaci. Základní myšlenka integrace křemíkových nanostruktur do solárních článk· spočívá ve zvýšení účinnosti konverze slunečního spektra kombinací několika tenkých vrstev s nanokrystaly a objemového Si článku tak, aby každá vrstva sluneční cely absorbo- vala určitou část spektra. Procesy, které se v těchto strukturách dějí krátce po excitaci nosič· náboje, však stále nejsou zcela popsány. Cílem práce je charakterizace těchto jev· metodami ča- sově rozlišené spektroskopie. Dalším úkolem je popsat vliv dopování jednotlivých částí materiálu a jeho pasivace ve vodíkové atmosféře na chování fotoexcitovaných nosič· a intenzitu...
237

Ultrarychlá laserová spektroskopie polovodičových nanostruktur / Ultrafast laser spectroscopy of semiconductor nanostructures

Chlouba, Tomáš January 2014 (has links)
In this work we investigate changes in dynamics of CdSe nanocrystalline films caused by different annealing temperatures and different conditions during films growth. We use methods of time-resolved laser spectroscopy like time-resolved pump and probe and streak camera to study these dynamics. We also measured linear absorption and luminiscence. Our goal is to match measured dynamics with dynamics of other samples with different annealing temperatures and discuss the microscopic origin of these dynamics. Powered by TCPDF (www.tcpdf.org)
238

Synthesis of silicon nanocrystal memories by sputter deposition

Schmidt, Jan-Uwe January 2005 (has links)
Aim of this work was, to investigate the preparation of Si NC memories by sputter deposition. The milestones are as follows: - Review of relevant literature. - Development of processes for an ultrathin tunnel-oxide and high quality sputtered SiO2 for use as control-oxide. - Evaluation of methods for the preparation of an oxygen-deficient silicon oxide inter-layer (the precursor of the Si NC layer). - Characterization of deposited films. - Establishment of techniques capable of probing the phase separation of SiOx and the formation of Si NC. - Establishment of annealing conditions compatible with the requirements of current CMOS technology based on experimental results and simulations of Si NC formation. - Preparation Si NC memory capacitors using the developed processes. - Characterization of these devices by suitable techniques. Demonstration of their memory functionality.
239

Towards monodisperse Silicon Nanocrystals: density gradient centrifugation applied on commercial gold nanoparticles

Khavari, Faraz January 2016 (has links)
The application of silicon nanocrystals as non-toxic bio-labels and downconverters requires their uniform size distribution in order to minimize the inhomogeneous broadening of the photoluminescence peak. In this thesis, we set the basis for their size-separation via the density-gradient centrifugation method. To be more precise, we successfully apply this technique to separate 5 and 10 nm gold nanoparticles from an ensemble by using an engineered medium layer stack. In addition, we explain how atomic force microscopy is used to measure the size of the nanoparticles, with a particular attentionon the removal of unwanted solvent-related effects. As a future plan, we will implement the technique for the size-separation of silicon nanocrystals.
240

The Thiol-ene Encapsulation and Photo-physical Characterization of Colloidal Silicon Nanocrystals Synthesized with Si6H12 Using Non-thermal Plasma Reactor

Sefannaser, Mahmud Ayad January 2021 (has links)
Silicon nanocrystals (SiNCs) are nanometer-sized semiconducting materials. Their small size endows them with unique photophysical properties. Efficient photoluminescence (PL) from silicon nanocrystal (SiNC) composites has important implications for emerging solar-energy collection technologies, yet a detailed understanding of PL relaxation in non-colloidal SiNCs is still materializing. In this dissertation, we examine the photophysical properties of silicon nanocrystal/off-stoichiometry thiol-ene composites (SiNCs/OSTE hybrids). The dissertation begins with an introduction to the photophysical properties of SiNCs, their photophysical properties, how SiNC/polymer composites are made, the various SiNC preparation techniques, and the most likely application areas for these nanocrystals. A description of experimental methods such as PL spectroscopy and transmission electron microscopy (TEM) follows, and SiNC/OSTE polymer preparation methods are then explained in detail. In the first study, TEM and photophysical characterization were performed on selected polydisperse SiNCs samples. These samples were synthesized in a nonthermal plasma reactor, using Si6H12 as precursor, and functionalized with R (where R is 1-dodecene). These SiNCs were dispersed in mesitylene:1-dodecene (5:1) as a colloid. Optical absorption, quantum efficiency, and PL lifetime of SiNCs were then investigated, as well as the relationship between quantum yield, lifetime, and PL peak. In the second study, we selected samples for size separation via the density gradient ultracentrifugation method (DGU). We successfully applied this technique to separate silicon nanocrystals with sizes from 2 nm to 4 nm from the ensemble samples using an engineered density medium layer stack, and photophysical characterization was performed on the DGU size–separated SiNCs. Lastly, we explored details of PL relaxation in photo-polymerized off-stoichiometric polymer/nanocrystal hybrids. We found time- and air-stable emission from dilute composites with up to 70% QY, and we investigated PL relaxation in the parameter space of nanocrystal size and temperature. In light of previous work, our results reveal similarities between the impacts of crosslinking and cooling to cryogenic temperature, but of which are characterized by a relative reduction in the available of phonons.

Page generated in 0.0316 seconds