• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 568
  • 113
  • 109
  • 82
  • 36
  • 25
  • 24
  • 14
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1198
  • 171
  • 155
  • 133
  • 99
  • 95
  • 89
  • 85
  • 84
  • 84
  • 83
  • 80
  • 79
  • 77
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Metal-polymer nanoparticulate systems for externally-controlled delivery

Gran, Martin Luke 09 February 2011 (has links)
Metal-polymer nanocomposites consisting of gold nanorods and temperature-responsive hydrogel nanoparticulates were investigated for use in externally-controlled drug delivery systems. Several different thermo-responsive hydrogels including poly(N-isopropyl acrylamide) (PNIPAAm) and poly(N-isopropryl acrylamide-co-acrylic acid) (P(NIPAAm-co-AA)) nanoparticles were synthesized for these nanocomposites using an aqueous dispersion polymerization method. In addition, nanoparticles of interpenetrating polymer networks (IPN) composed of poly(acrylamide) (PAAm) and poly(acrylic acid) (PAA) were synthesized using a water-in-oil emulsion polymerization. Temperature-responsive equilibrium swelling behavior of nanoparticles with varying crosslinking densities was characterized using dynamic light scattering. IPN systems exhibited a positive swelling response upon heating while PNIPAAm and copolymer systems collapsed upon increase in temperature above the transition point. Nanoparticles were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which demonstrated shape and morphology of polymer particles. Gold-polymer nanocomposites were formed by grafting gold nanorods to the surface of the polymer nanoparticles. Amine-functionalized gold nanorods were coupled to polymers using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS) to activate carboxyl groups on the surface of the polymer nanoparticles. TEM confirmed successful formation of the metal-polymer nanocomposites. Loading and release of a model therapeutic were done to assess the potential use of the polymer component of the nanocomposite for drug delivery. Fluorescein, a model for chemotherapeutics, was loaded into P(NIPAAm-co-AA) polymer nanoparticulates. Loading of the compound was shown to be a function of crosslinking density in the polymer network. Maximum loading was achieved using nanoparticles synthesized with a 10 mol% crosslinker feed ratio with entrapment efficiencies of 80.0 % and loading capacities of 12.0 %. Cytotoxicity studies were performed using a NIH/3T3 mouse fibroblast cell model. Cell viabilities in presence of P(NIPAAm-co-AA) nanoparticles were comparable to (not statistically different than) controls at concentrations up to 4 mg/ml. Similarly, gold-polymer composite concentrations up to 0.5 mg/ml caused limited cell death. / text
22

Polymer/Nanoparticle Nanocomposite Thin Films for Optoelectronics: Experiment and Theory

McClure, Sean Unknown Date
No description available.
23

Octaarginine Labelled 30 nm Gold Nanoparticles as Agents for Enhanced Radiotherapy

Latimer, Caitlin 03 December 2013 (has links)
Traditional radiation therapy is limited by the radiotoxic effects on surrounding healthy tissues. This project investigated the use of a gold nanoparticle (AuNP) conjugated to a cell-penetrating peptide (CPP) to increase tumour cell death during radiotherapy by maximizing the cellular import of the gold nanoparticles. ~8300 octaarginine CPPs were coupled per 30 nm AuNP through poly(ethylene glycol) spacers (AuNP-PEG-CPP). The CPPs enhanced the internalization of the AuNPs into three human breast cancer cell lines by a factor >2 as compared to untargeted AuNPs. Cells were treated with AuNP-PEG-CPP for 24 hours, prior to radiotherapy and their long-term proliferation was assessed in clonogenic assays. The increased internalization of AuNPs by the CPPs resulted in greater cell death following exposure to 300 kVp radiotherapy, by a dose enhancement factors between 1.3 and 2.1 depending on the cell line. These findings illustrate the potential of using AuNP-CPPs to enhance radiotherapy in patients.
24

Octaarginine Labelled 30 nm Gold Nanoparticles as Agents for Enhanced Radiotherapy

Latimer, Caitlin 03 December 2013 (has links)
Traditional radiation therapy is limited by the radiotoxic effects on surrounding healthy tissues. This project investigated the use of a gold nanoparticle (AuNP) conjugated to a cell-penetrating peptide (CPP) to increase tumour cell death during radiotherapy by maximizing the cellular import of the gold nanoparticles. ~8300 octaarginine CPPs were coupled per 30 nm AuNP through poly(ethylene glycol) spacers (AuNP-PEG-CPP). The CPPs enhanced the internalization of the AuNPs into three human breast cancer cell lines by a factor >2 as compared to untargeted AuNPs. Cells were treated with AuNP-PEG-CPP for 24 hours, prior to radiotherapy and their long-term proliferation was assessed in clonogenic assays. The increased internalization of AuNPs by the CPPs resulted in greater cell death following exposure to 300 kVp radiotherapy, by a dose enhancement factors between 1.3 and 2.1 depending on the cell line. These findings illustrate the potential of using AuNP-CPPs to enhance radiotherapy in patients.
25

Study of catalytic and biological activity of gold-containing metal nanoparticles

Donoeva, Baira January 2014 (has links)
Small particles of gold (< 100 nm) have attracted great interest among researchers due to the unique combination of their physicochemical properties. Among various research areas catalysis and bio-nanotechnology represent the largest areas of growth for gold nanoparticle research. Catalysts play a crucial role in the life of the modern society. More than 85 % of all chemical processes are catalytic, and this number is increasing every year. There is a constant demand to develop more efficient and durable catalysts in order to address increasing energy demands and environmental requirements. The first part of the thesis is focused on the study of catalytic activity of supported gold and mixed-metal catalysts, derived from atomically precise phosphine-stabilised gold and mixed-metal clusters in the liquid-phase oxidation of cyclohexene and one-pot synthesis of imines. Various characterisation techniques (TEM, diffuse-reflectance UV-vis, XPS, etc.) as well as kinetic studies were used in order to establish the optimal structure of gold catalysts. The effect of catalytic support, nature of hetero-metal atom for mixed metal-systems and type of catalyst pre-treatment were also examined. Gold nanoparticles are actively studied in various biomedical applications as they are offering new approaches to the detection and treatment of life-threatening diseases, such as cancer. The second part of this work discusses our preliminary investigations of biological activity of gold nanoparticles, stabilised with cancer-targeting molecules. In particular, the cytotoxicity of gold nanoparticles was studied using 11 different cancer and normal cell types. Gold uptake and particle localisation inside the cells were also investigated.
26

Nanostructured heterogeneous catalysts for green oxidation processes

Ovoshchnikov, Daniil January 2014 (has links)
The development of sustainable, environmentally benign oxidation processes of organic compounds is an important task for chemical industry. This challenge can be addressed by designing catalysts that enable the utilisation of molecular oxygen as an oxidant. The work in this thesis is focused on the development of heterogeneous catalysts for the selective aerobic oxidation of various organic compounds. The first part of the thesis (Chapters 3 and 4) covers the study of bifunctional gold catalysts for the solvent-free aerobic oxidation of cyclohexene, with a particular focus on tuning the selectivity of the catalyst. Various characterisation techniques (such as TEM, diffuse-reflectance UV-Vis spectroscopy, XPS), catalytic experiments and kinetic studies were used to investigate the nature of catalyst functionality and establish the optimal structure of a gold catalyst. The second part of the thesis (Chapter 5) covers the study of the photocatalytic activity of hydrous ruthenium oxide deposited on TiO₂ in the aerobic oxidation of amines to nitriles under irradiation with visible light. The effect of the wavelength of the utilised light, applicability of the Sun as light source and water as a solvent were investigated. High catalytic activity of ruthenium-based catalyst was demonstrated for various benzylic and aliphatic amines. Various mechanistic studies were performed, based on which the mechanism of photocatalysis was suggested.
27

Effect of nanoparticles on the properties of masonry mortars and assemblages at a cold temperature

Kazempour, Hooman January 2014 (has links)
Cold weather masonry construction is a major concern for contractors as they either have to implement heating practices for laying and curing masonry systems or postpone the construction to warmer periods. This can lead to loss of productivity rate and delays in construction schedules with associated extra costs. This thesis explores a novel approach for mitigating the adverse effects of cold weather on masonry construction in early fall periods through the application of nano-alumina (NA) and nano-silica (NS) in mortar joints. The assessment criteria were based on the fresh properties, hardened properties and microstructural features of mortar mixtures and mechanical behaviour of concrete masonry prisms at early and later ages. Various test results show that NS can be successfully used to minimize the adverse effects of cold temperature on mortar joints by speeding up the hydration of cement, shortening the setting time, and increasing the strength up to 72 h.
28

Incorporation of polyoxometalate with gelatin and their feasibility as an anti-cancer drug

Lee, Alvin 08 August 2014 (has links)
Polyoxometalates (POMs) are a class of transition-metal oxide clusters with significant applications in material science as well as in the biomedical field. Recently, it has been reported that POMs exhibit antitumor activity. POMs containing molybdenum (Mo), tungsten (W), and vanadium (V) with oxygen are three types of POMs with different structural features introduced by our lab as a novel inorganic chemotherapeutic agent for cancer treatment. In this study, Vanadium polyoxometalate (V-POM), which exhibited highest cytotoxicity in 5 different cancer cell lines in in vitro experiment, will be incorporated with Gelatin type B through polymer modification in hopes of prolonging circulation time and avoiding undesired toxicity. The stability, cellular uptake, and cytotoxicity of the V6-POM/Gelatin nanoparticles will be investigated in vitro. The reported study indicates the feasibility of using V6-POM/gelatin nanoparicles for anticancer applications.
29

Effects of Layer Double Hydroxide Nanoclays on the Toxicity of Copper to Daphnia Magna

Blake, Deanne Renee 05 1900 (has links)
Nanoparticles may affect secondary pollutants such as copper. Layer Double Hydroxides (LDH) are synthetically produced nanoparticles that adsorb copper via cation exchange. Pretreatment of copper test solutions with LDH nanoparticles followed by filtration removal of LDH nanoparticles demonstrated the smallest LDH aggregates removed the most copper toxicity. This was due to increased surface area for cation exchange relative to larger particle aggregates. Co-exposure tests of copper chloride and clay were run to determine if smaller clay particles increased copper uptake by D. magna. Coexposure treatments had lower LC50 values compared to the filtration tests, likely as a result of additive toxicity. LDH nanoclays do reduce copper toxicity in Daphnia magna and may serve as a remediation tool.
30

Binary Planet–Satellite Nanostructure Using RAFT Polymer

Peng, Wentao 05 June 2020 (has links)
No description available.

Page generated in 0.03 seconds