• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2630
  • 659
  • 574
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

Electrostatic Control of Single InAs Quantum Dots Using InP Nanotemplates

Cheriton, Ross 24 April 2012 (has links)
This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged exciton states from over thirty single quantum dots are calculated from the spectra. The g-factor shows a generally linear dependence on dot emission energy, in agreement with previous work on this subject. A positive linear correlation between diamagnetic coefficient and g-factor is observed.
812

Surface Properties Of Carbon Nanomaterials

Ok, Sinan 01 August 2005 (has links) (PDF)
Carbon can be in several forms. Amorphous, graphite and diamond. Fullerenes are accepted as the fourth form of solid carbon. They are basically, large carbon cage molecules. By far the most common one is C60. Nanotubes are actually longer forms of fullerenes. If a voltage is applied between two carbon rods, an arc will develop between them. If the arc is maintained in helium or argon (instead of air) clouds of black carbon powder is produced. Although many studies have been performed on cathodic deposits, (i.e. nanotubes first seen in this section) very few studies on the carbon sooth are found in the literature. Only around 10% of the black soot is fullerene, the composition of the remainder varies depending on the working conditions. But it is assumed to contain parts of various fullerene particles even higher fullerenes up to C300. This fraction is abbreviated as FES through the thesis. This work comprises the production of FES (fullerene extracted soot), soot, cathodic deposit produced under nanotube conditions and cathodic deposit produced under fullerene conditions and characterization of these in terms of their specific surface areas / pore volume distribution, porosity and as a second part, adsorption capacity of gases H2 and NH3 have been found. Both physical and chemical adsorption analyses were done using Quantichrome Autosorb 1-C surface analyzer. Obtained isotherms for nitrogen adsorption were found to be in between type II and type IV. BET surface areas for the samples of FES and soot prepared under nanotube conditions and cathodic deposit prepared under fullerene and nanotube conditions were found 240, 180, 14.6 and 29.7 m2/g of surface area respectively. Micropore volumes were calculated from Horwath - Kowazoe and Saito - Foley methods were found 0.045, 0.034, 2.38*10-3 and 1.19*10-3 cc/g respectively. Active surface areas for NH3 adsorption were found for FES, soot and Norit active carbon sample are found to be 39.2, 49.6, 32.5 m2/g at 300 C and 6.35, 14.65, 6.59 m2/g at 3000 C respectively. As a result of this work, it is concluded that although not superior to NORIT CN1 active carbon sample, FES is as active as that material and able to adsorb as much hydrogen as active carbon. This is important because FES is already a side product of the arc-evaporation fullerene production technique and has no known uses at all.
813

Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties

Han, Man Huon 25 August 2008 (has links)
The magnetic spinel ferrite nanoparticle is exceptionally intriguing nanocrystal system due to the industrial importance of various technical applications and the scientific significance of studying the quantum origin of magnetism. Studies of quantum influences upon magnetic properties have revealed that the spin-orbit coupling and the net magnetization greatly affect the net magnetic properties of each spinel ferrite system differently. In case of cobalt ferrite where spin-orbit coupling is relatively large, increasing Cr3+ doping concentration, which has smaller magnetic moment and zero angular moment, decreases blocking temperature, saturation magnetization, remnant magnetization and coercivity. However, in case of manganese ferrite where spin-orbit coupling is relatively small, increasing Cr3+ doping concentration, reduces all the magnetic parameters except coercivity. The coercivity increases due to smaller magnetocrystalline anisotropy energy constant which forces the coercivity to increase as saturation magnetization decreases in accordance with Stoner-Wohlfarth theory. In order to improve product quality and quantity, synthesis routes in hot oleylamine and aminolytic reaction were developed. Both methods were proven to be extremely effective, environmental friendly, inexpensive, and simple routes in the synthesis of a variety of spinel ferrite systems including CoFe2O4, MnFe2O4, NiFe2O4, and ZnFe2O4 from a single source metal precursor.
814

Spin and charge properties of Si: P probed using ion-implanted nanostructures

McCamey, Dane Robert, Physics, Faculty of Science, UNSW January 2007 (has links)
This thesis investigates the defects, charge states and spin properties of phosphorus doped silicon, and is motivated by a number of proposals for quantum information processing (QIP) that involve using the spin or charge of individual donors in silicon as qubits. The implantation of phosphorus into silicon is investigated; specifically the ability to remove damage and activate the implanted donors. The impact of implantation on the transport properties of silicon MOSFETs at cryogenic temperatures is used to investigate the damage. Implanting phosphorus into the MOSFET channel leads to reduced electron mobility. The defect density increases linearly with implant density (??ndefect = 0.08 ?? 0.01nimplant). Silicon implantation does not show this effect, suggesting that the additional defects are ionised P donors in the channel. Implant activation for low density donors was complete for an implant density of 2 x 1012 cm2. Similar studies were undertaken on devices with a variety of dielectrics. Thermally grown SiO2 was found to have the lowest defect density of those studied, although Al2O3 deposited via atomic layer deposition was found to have properties that may be useful for the fabrication of devices with low thermal processing budgets. The as-grown defect density of the thermal silicon dioxide was found to be 2.1 ?? 0.3 x 1011 cm2. Ion implantation of nanoscale devices allowed the spin properties of a small number of phosphorus donors in silicon to be probed via electrically detected magnetic resonance. This allowed the detection of the spin resonance of as few as 100 spins. This represents an improvement in number detection of 4 orders of magnitude over previous EDMR studies of donors in silicon. EDMR was used to investigate the properties of P donors in isotopically purified 28Si . The material had a background doping level too high to detect small numbers of spins, however, the narrow linewidth of the phosphorus resonance confirm that the isotopic purity is greater than 0.999. A proof-of-principle demonstration of pulsed EDMR of ion-implanted donors in silicon is presented. The spin dependent transient that results from manipulating the donor spins via pulsed ESR is sensitive to as few as 104 donors, and is a required component for observation of spin Rabi oscillations by this technique.
815

Mechanochemically synthesized nanomaterials for intermediate temperature solid oxide fuel cell membranes

Hos, James Pieter January 2005 (has links)
[Truncated abstract] In this dissertation an investigation into the utility of mechanochemically synthesized nanopowders for intermediate temperature solid oxide fuel cell components is reported. The results are presented in the following parts: the synthesis and characterisation of precursors for ceramic and cermet components for the fuel cell; the physical and electrical characterisation of the electrolyte and electrodes; and the fabrication, operation and analysis of the resulting fuel cells. Samarium-doped (20 mol%) ceria (SDC) nanopowder was fabricated by the solid-state mechanochemical reaction between SmCl3 with NaOH and Ce(OH)4 in 85 vol% dilution with NaCl. A milling time of 4 hours and heat treatment for 2 hours at 700°C yielded a material with equivalent particle and crystallite sizes of 17 nm. The existence of a complete solid solution was affirmed by electron energy loss spectroscopy and x-ray diffraction analysis. Doped-ceria compacts were sintered for 4 hours at 1350°C forming ceramics of 88% theoretical density. The ionic conductivity in flowing air was 0.009 S/cm, superior to commercially supplied nanoscale SDC. Anode precursor composite NiO-SDC nanopowder was synthesized by milling Ni(OH)2 with the previously defined SDC formulation ... Anode-supported fuel cells were fabricated on a substrate of at least 500 'm 55wt%NiO-SDC with 17vol% graphite pore formers. Suspensions of SDC were deposited by aerosol on the sintered bilayer at a thickness around 5 'm. A cathode of 10% SDC (SmSr)0.5CoO3 was deposited onto the sintered electrolyte and after firing had a thickness of around 25 'm. Operation of fuel cells in single-chamber mixtures of CH4 and air diluted in argon were successful and gave power outputs of 483 'W/cm2. Operation in undiluted 25 vol% CH4:air gave a power output of 5.5 mW/cm2. It was shown that a large polarisation resistance of 4.1 Ω.cm2 existed and this was assigned to losses in the anode, namely mass transport limitation associated with the catalytic combustion of methane and insufficient porosity. The large surface area of Ni appeared to allow more methane to combust and hence prevented its electrochemical reaction from occurring, thus limiting the performance of the cell. The synthesis procedures, ceramic processing and fabrication techniques and testing methods are discussed and contribute significant understanding to the fields of ceramic science and fuel cell technology.
816

An investigation of nonlinear tip-sample force models for nanoindentation

Hazra, Siddharth. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 27, 2008) Includes bibliographical references.
817

Defect-tolerance and testing for configurable nano-crossbars

Joshi, Mandar Vijay, January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Degree granted by Missouri University of Science and Technology, formerly known as University of Missouri--Rolla. Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 2, 2008) Includes bibliographical references.
818

Design, synthesis and characterization of bio/electroactive hybrids confining chromophores in dilute solutions using a helical peptide template /

Kas, Onur Y. January 2008 (has links)
Thesis (Ph. D.)--University of Delaware, 2007. / Principal faculty advisor: Mary E. Galvin-Donoghue, Dept. of Materials Science & Engineering. Includes bibliographical references.
819

Quantum waveguide theory /

Midgley, Stuart. January 2003 (has links)
Thesis (Ph.D.)--University of Western Australia, 2003.
820

Measurement of the Young's modulus of hexoloy silicon carbide thin films using nanoindentation

Crocker, Janina. January 1900 (has links)
Thesis (M.Eng.). / Written for the Dept. of Mechanical Engineering. Title from title page of PDF (viewed 2008/01/14). Includes bibliographical references.

Page generated in 0.2308 seconds