261 |
Investigating biological mechanisms for the induction of autophagy in neurons stressed by beta-amyloid peptidesZhang, Qishan, 张绮珊 January 2012 (has links)
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by global cognitive decline and progressive memory loss. As many other neurological disorders characterized by “proteinopathy”, pathology of AD includes beta-amyloid plaques and tau neurofibrillary tangles, which imply a crucial role of the cellular degradation systems in maintaining homeostasis of protein turnover. This is especially important for post-mitotic neuronal cells since aggravating protein crisis cannot be alleviated by cell division.
Autophagy is a cellular degradation process that removes or recycles long-lived proteins and damaged organelles, with its enhancement being remarkably implicated during the progression of Alzheimer’s disease (AD). The majority of studies have hitherto focused on the mechanism of how oligomeric Ah, as one of the potent toxic species in AD, activates autophagy. However, how autophagy is activated remains to be elucidated. The goal of this study is to reveal the underlying mechanisms of autophagy and the subsequent events.
Using imaging and biochemical analysis in primary cultures of rat hippocampal neurons, I found that oligomeric An-induced autophagy was initiated by aggregation of the endoplasmic reticulum (ER), in an mTOR-independent pathway. Ao-triggered autophagosomes were derived from omegasomes, starting from the ER aggregation sites. Aggregation of the ER facilitated the clustering of Atg14L to propel the recruitment of Beclin1 and Vps34, which contributes to generation of omegasomes. I further found that p62 targeted to ER aggregates possibly through the enhanced ubiquitinated ER chaperones trapped at ER aggregation sites, implicating the underlying mechanism for how p62 are recruited to autophagosome formation sites (omegasomes).
Herein, I report key steps for activation of AH-triggered autophagy, whereby a mechanistic link between ER aggregation, autophagic activation and recruitment of p62 to autophagosome formation sites is revealed. First, Ao-induced ER aggregation triggers autophagy, via the recruitment of Beclin 1 and Vps34 to Atg14L clusters, which is a promoting factor for omegasome formation at the ER aggregation site. Second, the recruitment of p62 to omegasomes is likely mediated by the attraction of the underlying accumulation of ubiquitinated ER chaperones at the ER aggregation site.
Up-regulation of autophagy is an early sign of AD. The activation of autophagy without tightly manipulation may contribute to neuronal damage in AD. In addition, how the autophagic substrates can be efficiently incorporated into the autophagic pathway is important for understanding the sustainability of autophagy. Therefore, my study on elucidating how ER aggregation initiates autophagy and the autophagic substrate/cargo receptor p62 are loaded onto autophagosome formation sites may help us to identify a potential therapeutic strategy or target for AD patients. / published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
262 |
Maturation profile of GABA-ergic inhibition in the vestibular nucleus : role in developmental plasticity and spatial recognitionHu, Huijing, 扈慧静 January 2011 (has links)
Inhibitory synaptic transmission within the vestibular circuits plays an essential
regulatory role in coordinating vestibular functions. The maturation profile of γ-
aminobutyric acid (GABA) synapses in the vestibular system remains unknown. To
address this, we first used double immunohistochemistry to document the postnatal
expression profile of GABAA receptors in canal-related and saccule-related vestibular
nuclear neurons of rats. The proportion of Fos / GABAA receptors α1 subunit doublelabeled
neurons progressively increased with age. Whole-cell patch-clamp experiments
on brainstem slice preparations were also employed to characterize the developmental
properties of these synapses within the medial vestibular nucleus. The frequency of
GABAA receptor-mediated miniature inhibitory postsynaptic currents (IPSC)
progressively increased during the first two postnatal weeks and reached a plateau
thereafter. This is in agreement with an increase in sensitivity to GABAA receptor α1
subunit agonist zolpidem during the same period. The rise time and decay time however
decreased by 2-fold. These results suggest that change in the composition of GABAA
receptor occurs during the functional maturation of medial vestibular neurons.
To further investigate whether GABA receptors contribute to synaptic plasticity in
the developing vestibular nucleus, two stimulus protocols were used. Repetitive
depolarizing pulses induced long-lasting decrease in the frequency of GABAA receptormediated
spontaneous IPSCs between P3 and P7. The probability of inducing such
frequency decline of sIPSCs decreased after the first postnatal week. High frequency
stimulation on the other hand, induced long-term depression (LTD) of GABAA receptormediated
evoked IPSCs between P3 and P5. The probability of inducing LTD decreased
after P14. These results indicate that LTD at GABAergic synapses could be easily
induced in developing medial vestibular neurons before maturation of GABAergic
synaptic transmission.
To examine if GABAergic transmission within the vestibular nucleus is crucial
for establishment of gravity-related spatial organization, an intervention approach was
adopted to perturb GABAergic transmission within the postnatal vestibular nucleus. A
slice of Elvax loaded with either GABAA receptor agonist muscimol or antagonist
bicuculline was inserted into the fourth ventricle and covered the bilateral vestibular
nuclei at different ages. Expression of Fos protein in functionally activated neurons was
used to demarcate the topographic spatial map in the inferior olive. The spatial map in
subnuclei IOβ and DMCC was disturbed in each adult rat that was implanted with
bicuculline- or muscimol-loaded Elvax at P1. However, no change was observed in
adult rats that were pretreated with bicuculline or muscimol at P14 or P21. Vestibularrelated
behavior tests were also performed. The acquisition of negative geotaxis, an
otolith-related orientation reflex, was delayed in postnatal rats pretreated with bicuculline
but was advanced in those rats pretreated with muscimol. Furthermore, the acquisition of
motor learning, evaluated by rotarod test, was impaired in adult rats treated with
bicuculline or muscimol.
Taken together, our results indicated that maturation of GABAergic transmission
within the vestibular nucleus play important roles in development of spatial recognition
and vestibular-related behavior. / published_or_final_version / Physiology / Doctoral / Doctor of Philosophy
|
263 |
Behavioral alterations in models of Parkinson's diseaseTillerson, Jennifer Layne 28 August 2008 (has links)
Not available / text
|
264 |
Tracking neuronal content using capillary electrophoresis with multiphoton excitation of fluorescenceWise, Dana Diane 28 August 2008 (has links)
Not available / text
|
265 |
Differential regulation of Ca²⁺ signals in dopamine neurons: a potential mechanism for neuroadaptive changes underlying drug addictionCui, Guohong 28 August 2008 (has links)
Not available / text
|
266 |
The response of inferior colliculus neurons in the Mexican free-tailed bat to species-specific callsKlug, Achim Egbert 23 March 2011 (has links)
Not available / text
|
267 |
Differential regulation of Ca²⁺ signals in dopamine neurons : a potential mechanism for neuroadaptive changes underlying drug addictionCui, Guohong, 1974- 18 August 2011 (has links)
Not available / text
|
268 |
Functional role of endothelin-1 on astrocytes and neurons under hypoxia/ischemia by using ET-1 transgenic and knockout miceYaw, Lai-ping., 邱麗萍. January 2003 (has links)
published_or_final_version / abstract / toc / Molecular Biology / Master / Master of Philosophy
|
269 |
Cellular and molecular mechanisms of bilirubin induced neural cell apoptosis and respective therapeutic interventionsBhatia, Inderjeet. January 2004 (has links)
published_or_final_version / abstract / toc / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
|
270 |
Global coherent activities in inhibitory neural systems: Chik Tai Wai David.Chik, Tai-wai, David., 戚大衛. January 2004 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
|
Page generated in 0.0276 seconds