• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR

Beeny, Bradley Aaron 1988- 14 March 2013 (has links)
Pursuant to the energy policy act of 2005, the High Temperature Gas-Cooled Reactor (HTGR) has been selected as the Very High Temperature Reactor (VHTR) that will become the Next Generation Nuclear Plant (NGNP). Although plans to build a demonstration plant at Idaho National Laboratories (INL) are currently on hold, a cooperative agreement on HTGR research between the U.S. Nuclear Regulatory Commission (NRC) and several academic investigators remains in place. One component of this agreement relates to validation of systems-level computer code modeling capabilities in anticipation of the eventual need to perform HTGR licensing analyses. Because the NRC has used MELCOR for LWR licensing in the past and because MELCOR was recently updated to include gas-cooled reactor physics models, MELCOR is among the system codes of interest in the cooperative agreement. The impetus for this thesis was a code-to-experiment validation study wherein MELCOR computer code predictions were to be benchmarked against experimental data from a reduced-scale HTGR testing apparatus called the High Temperature Test Facility (HTTF). For various reasons, HTTF data is not yet available from facility designers at Oregon State University, and hence the scope of this thesis was narrowed to include only computational studies of the HTTF and its prototype, General Atomics’ Modular High Temperature Gas-Cooled Reactor (MHTGR). Using the most complete literature references available for MHTGR design and using preliminary design information on the HTTF, MELCOR input decks for both systems were developed. Normal and off-normal system operating conditions were modeled via implementation of appropriate boundary and inititial conditions. MELCOR Predictions of system response for steady-state, pressurized conduction cool-down (PCC), and depressurized conduction cool-down (DCC) conditions were checked against nominal design parameters, physical intuition, and some computational results available from previous RELAP5-3D analyses at INL. All MELCOR input decks were successfully built and all scenarios were successfully modeled under certain assumptions. Given that the HTTF input deck is preliminary and was based on dated references, the results were altogether imperfect but encouraging since no indications of as yet unknown deficiencies in MELCOR modeling capability were observed. Researchers at TAMU are in a good position to revise the MELCOR models upon receipt of new information and to move forward with MELCOR-to-HTTF benchmarking when and if test data becomes available.
2

The chemical reactor for the decomposition of sulphuric acid for the hybrid sulphur process / by M.D. Coetzee

Coetzee, Martin-David January 2008 (has links)
The utilisation of alternate sources of energy has reached critical levels due to the constantly growing demand for energy and the diminishing of fossil fuels. The production of hydrogen through the Hybrid Sulphur process is a possible alternative that may contribute towards alleviating the pressure on the world's energy resources. The two-step thermochemical cycle for decomposing water into hydrogen and oxygen offers the potential to obtain acceptable thermal efficiencies, while still using common and inexpensive chemicals. The process mainly makes use of two unit process operations: an electrolyser and a chemical decomposition reactor. This research project focuses on the concept design of the decomposition reactor operated adiabatically as a multi-stage reactor system with inter-stage heating, in order to simplify the reactor design. This approach allows for the independent evaluation of the reaction kinetics and the heat transfer mechanism. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
3

The chemical reactor for the decomposition of sulphuric acid for the hybrid sulphur process / Martin-David Coetzee

Coetzee, Martin-David January 2008 (has links)
The utilisation of alternate sources of energy has reached critical levels due to the constantly growing demand for energy and the diminishing of fossil fuels. The production of hydrogen through the Hybrid Sulphur process is a possible alternative that may contribute towards alleviating the pressure on the world's energy resources. The two-step thermochemical cycle for decomposing water into hydrogen and oxygen offers the potential to obtain acceptable thermal efficiencies, while still using common and inexpensive chemicals. The process mainly makes use of two unit process operations: an electrolyser and a chemical decomposition reactor. This research project focuses on the concept design of the decomposition reactor operated adiabatically as a multi-stage reactor system with inter-stage heating, in order to simplify the reactor design. This approach allows for the independent evaluation of the reaction kinetics and the heat transfer mechanism. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
4

The chemical reactor for the decomposition of sulphuric acid for the hybrid sulphur process / Martin-David Coetzee

Coetzee, Martin-David January 2008 (has links)
The utilisation of alternate sources of energy has reached critical levels due to the constantly growing demand for energy and the diminishing of fossil fuels. The production of hydrogen through the Hybrid Sulphur process is a possible alternative that may contribute towards alleviating the pressure on the world's energy resources. The two-step thermochemical cycle for decomposing water into hydrogen and oxygen offers the potential to obtain acceptable thermal efficiencies, while still using common and inexpensive chemicals. The process mainly makes use of two unit process operations: an electrolyser and a chemical decomposition reactor. This research project focuses on the concept design of the decomposition reactor operated adiabatically as a multi-stage reactor system with inter-stage heating, in order to simplify the reactor design. This approach allows for the independent evaluation of the reaction kinetics and the heat transfer mechanism. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
5

Coupling Interface for Physics-to-System Simulations

Leimon, Michael 1985- 14 March 2013 (has links)
A new interfacial code was developed to couple the reactor physics code PARCS/AGREE to the systems level code MELCOR, with a goal of enabling state- of-art transient event analysis for high temperature gas reactor designs. Following the completion of this new code, it was then demonstrated by running two different coupled simulations, one of which was a transient event. The resultant code is capable of coupling spatial power profiles, point kinetics information and transient reactivity values from PARCS/AGREE to MELCOR by means of input/output file manipulation. The coupling demonstrations were between PBMR400 models that were designed to have an equivalent core region nodalization to that which was used in the OECD/NEA PBMR400 benchmark, thus allowing for comparisons. The accessible coupled simulation output results as extracted from MELCOR appeared to be overly generalized. Even so, the axial profiles from the coupled steady-state demonstration were in good agreement with the axial profiles of other OECD/NEA participants. Conversely, the coupled transient simulations showed a suspect, maximum average nodal component temperature rise of approximately 0.4K from a 3+$ reactivity insertion.

Page generated in 0.0197 seconds