• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-state PLS based data-driven predictive modeling for continuous process analytics

Kumar, Vinay 09 July 2012 (has links)
Today’s process control industry, which is extensively automated, generates huge amounts of process data from the sensors used to monitor the processes. These data if effectively analyzed and interpreted can give a clearer picture of the performance of the underlying process and can be used for its proactive monitoring. With the great advancements in computing systems a new genre of process monitoring and fault detection systems are being developed which are essentially data-driven. The objectives of this research are to explore a set of data-driven methodologies with a motive to provide a predictive modeling framework and to apply it to process control. This project explores some of the data-driven methods being used in the process control industry, compares their performance, and introduces a novel method based on statistical process control techniques. To evaluate the performance of this novel predictive modeling technique called Multi-state PLS, a patented continuous process analytics technique that is being developed at Emerson Process Management, Austin, some extensive simulations were performed in MATLAB. A MATLAB Graphical User Interface has been developed for implementing the algorithm on the data generated from the simulation of a continuously stirred blending tank. The effects of noise, disturbances, and different excitations on the performance of this algorithm were studied through these simulations. The simulations have been performed first on a steady state system and then applied to a dynamic system .Based on the results obtained for the dynamic system, some modifications have been done in the algorithm to further improve the prediction performance when the system is in dynamic state. Future work includes implementing of the MATLAB based predictive modeling technique to real production data, assessing the performance of the algorithm and to compare with the performance for simulated data. / text
2

Analyse factorielle de données structurées en groupes d'individus : application en biologie / Multivariate data analysis of multi-group datasets : application to biology

Eslami, Aida 21 October 2013 (has links)
Ce travail concerne les analyses visant à étudier les données où les individus sont structurés en différents groupes (données multi-groupes). La thèse aborde la question des données multi-groupes ayant une structure en un seul tableau, plusieurs tableaux, trois voies et deux blocs (régression). Cette thèse présente plusieurs méthodes d'analyse de données multi-groupes dans le cadre de l'analyse factorielle. Notre travail comporte trois parties. La première partie traite de l'analyse de données multi-groupes (un bloc de variables divisé en sous-groupes d'individus). Le but est soit descriptif (analyse intra-groupes) ou prédictif (analyse discriminante ou analyse inter-groupe). Nous commençons par une description exhaustive des méthodes multi-groupes. En outre, nous proposons deux méthodes : l'Analyse Procrustéenne duale et l'Analyse en Composantes Communes et Poids Spécifiques duale. Nous exposons également de nouvelles propriétés et algorithmes pour l'Analyse en Composantes Principales multi-groupes. La deuxième partie concerne l'analyse multi-blocs et multi-groupes et l'analyse trois voies et multi-groupes. Nous présentons les méthodes existantes. Par ailleurs, nous proposons deux méthodes, l'ACP multi-blocs et multi-groupes et l'ACP multi-blocs et multi-groupes pondérée, vues comme des extensions d'Analyse en Composantes Principales multi-groupes. L'analyse en deux blocs et multi-groupes est prise en compte dans la troisième partie. Tout d'abord, nous présentons des méthodes appropriées pour trouver la relation entre un ensemble de données explicatives et un ensemble de données à expliquer, les deux tableaux présentant une structure de groupe entre les individus. Par la suite, nous proposons quatre méthodes pouvant être vues comme des extensions de la régression PLS au cas multi-groupes, et parmi eux, nous en sélectionnons une et la développons dans une stratégie de régression. Les méthodes proposées sont illustrées sur la base de plusieurs jeux de données réels dans le domaine de la biologie. Toutes les stratégies d'analyse sont programmées sur le logiciel libre R. / This work deals with multi-group analysis, to study multi-group data where individuals are a priori structured into different groups. The thesis tackles the issue of multi-group data in a multivariate, multi-block, three-way and two-block (regression) setting. It presents several methods of multi-group data analysis in the framework of factorial analysis. It includes three sections. The first section concerns the case of multivariate multi-group data. The aim is either descriptive (within-group analysis) or predictive (discriminant analysis, between-group analysis). We start with a comprehensive review of multi-group methods. Furthermore, we propose two methods namely Dual Generalized Procrustes Analysis and Dual Common Component and Specific Weights Analysis. We also exhibit new properties and algorithms for multi-group Principal Component Analysis. The second section deals with multiblock multi-group and three-way multi-group data analysis. We give a general review of multiblock multi-group methods. In addition, we propose two methods, namely multiblock and multi-group PCA and Weighted-multiblock and multi-group PCA, as extensions of multi-group Principal Component Analysis. The two-block multi-group analysis is taken into account in the third section. Firstly, we give a presentation of appropriate methods to investigate the relationship between an explanatory dataset and a dependent dataset where there is a group structure among individuals. Thereafter, we propose four methods, namely multi-group PLS, in the PLS approach, and among them we select one and develop it into a regression strategy. The proposed methods are illustrated on the basis of several real datasets in the field of biology. All the strategies of analysis are implemented within the framework of R.

Page generated in 0.2557 seconds