• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planar Cu and O NMR and the Pseudogap of Cuprate Superconductors

Avramovska, Marija, Nachtigal, Jakob, Tsankov, Stefan, Haase, Jürgen 02 June 2023 (has links)
Recently, an analysis of all available planar oxygen shift and relaxation data for the cuprate high-temperature superconductors showed that the data can be understood with a simple spin susceptibility from a metallic density of states common to all cuprates. It carries a doping dependent but temperature independent pseudogap at the Fermi surface, which causes the deviations from normal metallic behavior, also in the specific heat. Here, a more coherent, unbiased assessment of all data, including planar Cu, is presented and consequences are discussed, since the planar Cu data were collected and analyzed prior to the O data. The main finding is that the planar Cu shifts for one direction of the external magnetic field largely follow from the same states and pseudogap. This explains the shift suppression stated more recently, which leads to the failure of the Korringa relation in contrast to an enhancement of the relaxation due to antiferromagnetic spin fluctuations originally proposed. However, there is still the need for a second spin component that appears to be associated with the Cu 3𝑑(𝑥2−𝑦2) hole to explain the complex Cu shift anisotropy and family dependence. Furthermore, it is argued that the planar Cu relaxation which was reported recently to be rather ubiquitous for the cuprates, must be related to this universal density of states and the second spin component, while not being affected by the simple pseudogap. Thus, while this universal metallic density of states with a pseudogap is also found in the planar Cu data, there is still need for a more elaborate scenario that eludes planar O.
2

Temperature-Independent Cuprate Pseudogap from Planar Oxygen NMR

Nachtigal, Jakob, Avramovska, Marija, Erb, Andreas, Pavi´cevi´c, Danica, Guehne, Robin, Haase, Jürgen 13 April 2023 (has links)
Planar oxygen nuclear magnetic resonance (NMR) relaxation and shift data from all cuprate superconductors available in the literature are analyzed. They reveal a temperature-independent pseudogap at the Fermi surface, which increases with decreasing doping in family-specific ways, i.e., for some materials, the pseudogap is substantial at optimal doping while for others it is nearly closed at optimal doping. The states above the pseudogap, or in its absence are similar for all cuprates and doping levels, and Fermi liquid-like. If the pseudogap is assumed exponential it can be as large as about 1500 K for the most underdoped systems, relating it to the exchange coupling. The pseudogap can vary substantially throughout a material, being the cause of cuprate inhomogeneity in terms of charge and spin, so consequences for the NMR analyses are discussed. This pseudogap appears to be in agreement with the specific heat data measured for the YBaCuO family of materials, long ago. Nuclear relaxation and shift show deviations from this scenario near Tc, possibly due to other in-gap states.

Page generated in 0.0477 seconds