21 |
Structural and Dynamic Profiles of the WT hFEN1 in solutionAlmulhim, Fatimah F. 06 1900 (has links)
Genomic DNA is under constant assault by environmental factors that introduce a variety of DNA lesions. Cells evolved several DNA repair and recombination mechanisms to remove these damages and ensure the integrity of the DNA material. A variety of specific proteins, called nucleases, processes toxic DNA structures that deviate from the heritable duplex DNA as common pathway intermediates. DNA-induced protein ordering is a common feature in all DNA repair nucleases. Still, the conformational requirement of the DNA and the protein and how they control the catalytic selectivity of the nuclease remain largely unknown. This study focus on the bases of catalytic activity of a protein belongs to the 5’ nuclease super-family called the human Flap endonuclease 1 (FEN1); it removes excess 5’ flaps that are generated during DNA replication. hFEN1 mutations and over-expression had been linked to a variety of cancers. This thesis aims to study the structural and dynamic properties of free hFEN1 and the catalytic activity of DNA-bound hFEN1 in solution utilizing the modern high-resolution multidimensional Nuclear Magnetic Resonance (NMR) spectroscopy. It was possible to depict the secondary structure and backbone conformation in solution of wild type (WT) hFEN1 by the usage of the improved list of assigned resonances, derived from the NMR 2D and 3D ¹⁵N-detected experiments and compared to the assignment with the previously published resonance assignment (BMRB id: 27160). I was successfully assigned the new spectrum and enhanced it by assigning seven more residues. Moreover, we tested the interaction of 1:10 ratio of hFEN1-Ca2+ with DNA by the ¹³C-detected 2D CACO experiment. The results indicate
hFEN1:DNA interaction. Furthermore, parts of hFEN1 get more ordered/structured once DNA appears, thus we recorded the protein flexibly by 2D ¹H-¹⁵N TROSY-HSQC using the relaxation rate parameters: longitudinal R1, transverse R2 complemented with ¹⁵N-{¹H} NOEs (heteronuclear Overhauser enhancement). It was found that the overall molecular architecture is rigid, and the highest flexibility lies in the α2-α3 loop and arch (α4-α5) regions. Further analysis is needed to understand more profoundly the activity of hFEN1 in an atomic level by inducing mutations and testing the protein in various environmental conditions.
|
22 |
Examining the Inhibition Mechanism of EPAC / Inhibition Mechanism of EPACShao, Hongzhao January 2019 (has links)
A novel partial agonist of the exchange protein activated by cAMP isoform 1
(EPAC1), I942, was recently discovered and shown to reduce the guanine exchange
factor activity of cAMP-bound EPAC1 to approximately 10% relative to cAMP
activation. However, the inhibition mechanism of I942 remains unknown. Here, we
utilize NMR spectroscopy to probe the inhibitory I942 - EPAC1 interactions at atomic
resolution. The EPAC1 - I942 interface was mapped through intermolecular NOEs
measured by 15N and 13C filtered NOESY-HSQC experiment. Intermolecular NOE
mapping combined with other protein NMR methods, such as saturation transfer
difference, transfer Nuclear Overhauser Effect spectroscopy and chemical shift mapping,
we revealed that I942 interacts with the phosphate binding cassette (PBC) and base
binding region (BBR) of the EPAC1 cyclic nucleotide binding (CNB) domain, similar to
cAMP. The PBC controls the conformation of the hinge region, and subsequently,
allosterically shifts the hinge region between its active/inactive states. Molecular
dynamics simulation based on the NMR spectroscopy data revealed that EPAC1-CNB
adopts an intermediate conformation between its inactive and active states, which
explains the partial agonist nature of I942. / Thesis / Master of Science (MSc) / The exchange protein activated by cAMP (EPAC) is a receptor for the classical
secondary messenger cAMP. EPAC is present in multiple human systems and plays a
pivotal role in the development of a wide range of diseases. In this study, we aim to
establish the inhibition mechanism of a novel small molecule EPAC inhibitor/partial
agonist I942 using NMR spectroscopy with the goal of achieving a better understanding
of EPAC inhibition and paving the way for new small molecule EPAC inhibitors that can
potentially treat EPAC-related diseases such as heart failure and diabetes.
|
23 |
Paramagnetic tools for the structural analysis of high molecular weight proteinsCamacho Zarco, Aldo Roman 19 January 2015 (has links)
No description available.
|
24 |
Secondary metabolites from Xylaria endophytes : the isolation and structure elucidation of secondary metabolites from Xylaria endophytes by chemical and spectroscopic methodsAl-Busaidi, Harith N. K. January 2011 (has links)
No description available.
|
25 |
Modulation of Molecular Properties : Host–Guest Interactions for Structural Analysis and Chemical ReactionsNorrehed, Sara January 2013 (has links)
This thesis concerns the construction, use and modulation of various host–guest systems, from small bispidines for binding of inorganic ions to bisporphyrin clips for supramolecular systems. Small flexible molecules undergo fast conformational movements when in solution. These conformational movements generate time-averaged population-weighted chemical shifts, coupling constants and NOEs when analysed by NMR spectroscopy. A bisporphyrin clip was designed to be used as a host for restriction of conformational movements of small flexible molecules by ditopic metal-ligand binding. Based on conformational analysis in combination with NMR analysis of molecular flexibility in solution (NAMFIS), the relative stereochemistry of flexible alditol-derived diamines containing three or four consecutive stereocentres could be determined. To further explore the idea of conformational deconvolution via host–guest binding, two flexible molecular tweezers with photoswitchable moieties were developed. Upon photoswitching cis/trans isomerisation facilitates the opening and closing of these bisporphyrin hosts. A guest molecule could then be exposed to a “catch and stretch” or “catch and release” effect. Preliminary studies have shown that photoisomerisation of the constructed systems is possible without photodecomposition and preliminary binding studies have been conducted. Controlled modulation of molecular conformations is of interest especially if the conformational steering activates a unit working as a nucleator in a larger structure or facilitates a reaction. The protonation-triggered modulation of bispidine conformations has been investigated. In addition to previously reported conformations we have observed that upon diprotonation a bispidine derivative can be driven into the unusual boat-boat conformation. Finally, the unexpected formation of persistent organic radicals with a cyclophane motif from the reaction of N,N´-diphenyl-1-5-diazacyclooctane and AgBF4 is described. Interestingly, these diradicals exhibit features such as intramolecular π-stacking without lateral displacement and also intramolecular spin pairing.
|
26 |
Cis-trans isomerisation of azobenzenes studied by NMR spectroscopy with in situ laser irradiation and DFT calculationsWazzan, Nuha January 2009 (has links)
NMR spectroscopy with in situ laser irradiation has been used to investigate the photo- and thermal isomerisation of eight azobenzene derivatives; diphenyldiazene (azobenzene), p-phenylazoaniline (p-aminoazobenzene), 4-(dimethylamino)azobenzene (Methyl Yellow), 4-dimethylamino-2-methylazobenzene (o-Methyl-Methyl Yellow), p-nitroazobenzene, 4-nitro-4’-dimethylaminoazobeneze (Dimethyl-nitroazobenzene), 4-(4-nitrophenylazo)aniline (Disperse Orange 3) and N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) (Disperse Red 1). The rate constants and activation parameters of the thermal cis-to-trans isomerisation have been measured experimentally and correlated to the mechanism of isomerisation in two solvents. The experimental data show that the values of the activation energy (related to the enthalpy of activation) and the entropy of activation (related to the Arrhenius pre-exponential factor) vary significantly from molecule to molecule and thus both of these parameters influence the inter-molecule variation of the rate constant. Similarly, both of these parameters influence the solvent-dependence of the rate constant. Complementary computational studies have been carried out in the gas phase and in solution using density functional theory (DFT) to predict the structures of the cis and trans isomers and the transition state, and to explore the reaction coordinate. The theoretically predicted activation parameters are compared with those determined experimentally, and the utility of DFT calculations in predicting the effects of molecular structure and solvation on the kinetics of cis-to-trans isomerisation assessed. The DFT-predicted values of the activation energy and Gibbs free energy of activation in DMSO are in good agreement with the experimental values, while the values in benzene tend to be in less good agreement. The DFT calculations are unsuccessful at predicting the entropy of activation, where in all cases there is a large discrepancy between the theoretical and experimental values. The DFT- calculated energy differences between the activation energies of the two inversion pathways for the asymmetric azobenzenes suggests the favourable phenyl ring for inversion. The formation of a linear transition state from a dihedral rotation potential energy curve is explained in terms of the lower activation barrier of the more favourable inversion route (α-inversion) than that of the dihedral rotation pathway, and suggests the inversion through the α-phenyl ring to be the favoured pathway for substituted azobenzene. DFT calculations are able to obtain a transition state corresponding to pure rotation pathway for two azobenzene derivatives. The higher activation barrier for the formation of the transition state corresponding to this pathway compared to that of the formation of the α-transition state confirmed the previous conclusion. DFT predictions of the effect of protonation on the thermal rates of isomerisation of azobenzenes substituted with electron-donating group were in good agreement with the experimental results; both conclude faster isomerisation and lower activation barriers on protonation. However, DFT calculations could not confirm the postulation of rotational transition state for the isomerisation of the protonated molecule, as a result of weakening of the N=N bond by protonation.
|
27 |
Cellulose-water interaction: a spectroscopic studyLindh, Erik L January 2016 (has links)
The human society of today has a significantly negative impact on the environment and needs to change its way of living towards a more sustainable path if to continue to live on a healthy planet. One path is believed to be an increased usage of naturally degradable and renewable raw materials and, therefore, attention has been focused on the highly abundant biopolymer cellulose. However, a large drawback with cellulose-based materials is the significant change of their mechanical properties when in contact with water. Despite more than a century of research, the extensively investigated interaction between water and cellulose still possesses many unsettled questions, and if the answer to those were known, cellulose-based materials could be more efficiently utilized. It is well understood that one interaction between cellulose and water is through hydrogen bonds, established between water and the hydroxyl groups of the cellulose. Due to the very similar properties of the hydroxyl groups in water and the hydroxyl groups of the cellulose, the specific interaction-induced effect on the hydroxyl groups at a cellulose surface is difficult to investigate. Therefore, a method based on 2H MAS NMR spectroscopy has been developed and validated in this work. Due to the verified ability of the methodology to provide site-selective information regarding the molecular dynamics of the cellulose deuteroxyl groups (i.e. deuterium-exchanged hydroxyl groups), it was shown by investigating 1H-2H exchanged cellulose samples that only two of the three accessible hydroxyl groups (on the surface of cellulose fibrils) exchange with water. This finding was also verified by FT-IR spectroscopy, and together with MD simulations we could establish that it is O(2)H and O(6)H hydroxyl groups (of the constituting glucose units) that exchange with water. From the MD simulations additional conclusion could be drawn regarding the molecular interactions required for hydrogen exchange; an exchanging hydroxyl group needs to donate its hydrogen in a hydrogen bond to water. Exchange kinetics of thin cellulose films were investigated by monitoring two different exchange processes with FT-IR spectroscopy. Specific information about the two exchanging hydroxyl/deuteroxyl groups was then extracted by deconvoluting the changing intensities of the recorded IR spectra. It was recognized that the exchange of the hydroxyl groups were well described by a two-region model, which was assessed to correspond to two fibrillary surfaces differentiated by their respective positions in the fibril aggregate. From the detailed deconvolution it was also possible to estimate the fraction of these two surfaces, which indicated that the average aggregate of cotton cellulose is built up by three to four fibrils. 2H MAS NMR spectroscopy was used to examine different states of water in cellulose samples, hydrated at different relative humidities of heavy water. The results showed that there exist two states of water adsorbed onto the cellulose, differentiated by distinct different mobilities. These two states of water are well separated and had negligible exchange on the time scale of the experiments. It was suggested that they are located at the internal and external surfaces of the fibril aggregates. By letting cellulose nanofibrils undergo an epoxidation reaction with a mono epoxide some indicative results regarding how to protect the cellulose material from the negative impact of water were presented. The protecting effect of the epoxidation were examined by mechanically testing and NMR spectroscopy. It was proposed that by changing the dominant interaction between the fibril aggregates from hydrophilic hydrogen bonds to hydrophobic π-interactions the sensitivity to moisture was much reduced. The results also indicated that the relative reduction in moisture sensitivity was largest for the samples with highest moisture content. / <p>QC 20161229</p>
|
28 |
Development of a saposin A based native-like phospholipid bilayer system for NMR studiesChien, Chih-Ta January 2019 (has links)
Membrane proteins are important targets that represent more than 50% of current drug targets. However, characterisation of membrane proteins falls behind compared to their soluble counterparts. The most challenging part of membrane protein research is finding a suitable membrane mimetic that stabilises them in solution and maintains their native structure and function. The recently developed saposin-A (SapA) based lipid nanoparticle system seems to be advantageous over existing membrane mimetic system. It provides a native-like lipid bilayer, high incorporation yield and more importantly size adaptability. SapA lipid nanoparticles have been applied to structural studies and two high-resolution structures of membrane proteins were previously obtained using cryo-electron microscopy. This thesis aimed to study small-to-medium sized membrane proteins in SapA lipid nanoparticles using NMR spectroscopy. We first explore the mechanism of SapA lipid nanoparticle formation for the purpose of establishing an incorporation protocol that can be applied to most membrane proteins. The effect of pH and the presence of detergents on the opening of SapA was investigated in Chapter 2. A proposed energy diagram describing the mechanism of SapA opening is reported with which we were able to develop a protocol that can generate different sizes of SapA-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) nanoparticles. In addition, we also showed that SapA can form lipid nanoparticles with various lipid compositions, showing the versatility of the system. In Chapter 3, we validated the ability of SapA lipid nanoparticles to be used as a membrane mimetic. A -barrel model protein, bacterial outer membrane protein X (OmpX), was incorporated into SapA-DMPC nanoparticles and a 2D 15N-1H correlation NMR spectrum was recorded. Our result was compared to the NMR parameters of the same protein in MSP nanodiscs from the literature, and it was concluded that SapA lipid nanoparticles indeed provide a lipid bilayer environment similar to MSP nanodiscs. Because of high incorporation yield, we were able to incorporate OmpX into different lipid compositions to investigate the effect of lipid head groups and aliphatic chains on the membrane protein's chemical environment. Next, the applicability of SapA lipid nanoparticles was expanded to -helical transmembrane proteins in Chapter 4. Two microbial rhodopsins, Anabaena sensory rhodopsin (ASR) and Natronomonas pharaonis sensory rhodopsin II (pSRII), were tested. The parameters for expression and purification of ASR were first screened for the optimal yield. Although incorporation of ASR resulted in inhomogeneous particles due to imperfect experimental procedure, pSRII in SapA-DMPC nanoparticles showed high sample quality. The 2D NMR spectrum of pSRII in SapA-DMPC nanoparticles shows distinct differences to pSRII in detergent micelles, suggesting substantial effects from the membrane mimetic on the conformation of the membrane protein. Despite the good NMR spectral quality considering the large particle size, perdeuteration of pSRII and the lipids will be necessary for further investigation. With the SapA lipid nanoparticles established, we aimed to use it for the study of a biologically important G protein-coupled receptor, 1-adrenergic receptor (1AR), discussed in Chapter 5. The possibility of expressing 1AR using a cell-free expression system was explored first. Although a good amount of the protein was obtained, only a fraction of it was functional. Therefore, a conventional baculovirus-insect cell expression system was used to produce selective isotope labelled 1AR for NMR studies. NMR spectra of 1AR in SapA-DMPC nanoparticles with activating ligands and an intracellular binding partner were recorded and compared to the spectra of the same protein in detergents. This revealed a more active-like conformation of ligand-bound 1AR in the lipid bilayer, suggesting that certain parts of the protein are sensitive to the membrane mimetic used. This emphasises the importance of using a native-like membrane mimetic to capture the full properties of membrane proteins. In conclusion, I demonstrate in this thesis that SapA lipid nanoparticles are a versatile membrane mimetic system that can accommodate membrane proteins with different sizes and folds. This system is also compatible with solution NMR spectroscopy enabling structure and dynamics studies of biologically important membrane proteins. We believe SapA lipid nanoparticles will have a significant impact on membrane protein research in the future.
|
29 |
An Investigation of the Chemical Constituents of Two Species of Marine SpongeTucker, David John, n/a January 1990 (has links)
An investigation of the dichioromethane extract of the sponge, Xestospongia testudinaria indicated that the extract was composed of approximately 40% sterols, 30% saturated fatty acids, 10% mono-unsaturated fatty acids and 20% poly-unsaturated acids. The sterol profile was found to vary between two collections of the sponge. In the first collection the major sterol was the C30 compound, xestosterol (4), which had not previously been reported to occur in this species. In the second collection there was a wider distribution of components with cholesterol (2a) being a major constituent and xestosterol being present in a much lower percentage than in the first collection. The poly-unsaturated acid fraction contained an extremely complex mixture. The novel brominated bisacetylenic C18 (47) and brominated C28 (65) acids were found to be the major components. Another six novel brominated acetylenic acids, which were very unstable, were also identified as well as an ester of 4 with 47. The method developed for the separation of the poly-unsaturated acids from the other classes of metabolites and for the isolation of the pure compounds is discussed and their structural elucidation, largely on the basis of NIMR spectroscopy is described. From the hexane extract of Carteriospongia foliascens, two novel bisalkylated norscalarane derivatives (114 and 116) and a bisalkylated scalarane derivative (130) have been isolated. By use of high field NMR and multipulse NMR techniques a complete assignment of the 111 and 13C NMR spectra of 130 has been achieved on 1.5mg of material. This represents the first report of a complete assignment of the 1J4 NMR spectrum of a scalarane derivative. The C-4 stereochemistry of 130 was determined by use of 1H NMR spectroscopic techniques, which gave results in agreement with the previously used 13C NMR method.
|
30 |
Protein Design Based on a PHD ScaffoldKwan, Ann Hau Yu January 2004 (has links)
The plant homeodomain (PHD) is a protein domain of ~45�100 residues characterised by a Cys4-His-Cys3 zinc-binding motif. When we commenced our study of the PHD in 2000, it was clear that the domain was commonly found in proteins involved in transcription. Sequence alignments indicate that while the cysteines, histidine and a few other key residues are strictly conserved, the rest of the domain varies greatly in terms of both amino acid composition and length. However, no structural information was available on the PHD and little was known about its function. We were therefore interested in determining the structure of a PHD in the hope that this might shed some light on its function and molecular mechanism of action. Our work began with the structure determination of a representative PHD, Mi2b-P2, and this work is presented in Chapter 3. Through comparison of this structure with the two other PHD structures that were determined during the course of our work, it became clear that PHDs adopt a well-defined globular fold with a superimposable core region. In addition, PHDs contain two loop regions (termed L1 and L3) that display increased flexibility and overlay less well between the three PHD structures available. These L1 and L3 regions correspond to variable regions identified earlier in PHD sequence alignments, indicating that L1 and L3 are probably not crucial for the PHD fold, but are instead likely to be responsible for imparting function(s) to the PHD. Indeed, numerous recent functional studies of PHDs from different proteins have since demonstrated their ability in binding a range of other proteins. In order to ascertain whether or not L1 and L3 were in fact dispensable for folding, we made extensive mutations (including both insertions and substitutions) in the loop regions of Mi2b-P2 and showed that the structure was maintained. We then went on to illustrate that a new function could be imparted to Mi2b-P2 by inserting a five-residue CtBP-binding motif into the L1 region and showed this chimera could fold and bind CtBP. Having established that the PHD could adopt a new binding function, we next sought to use combinatorial methods to introduce other novel functions into the PHD scaffold. Phage display was selected for this purpose, because it is a well-established technique and has been used successfully to engineer zinc-binding domains by other researchers. However, in order to establish this technique in our laboratory, we first chose a control system in which two partner proteins were already known to interact in vitro. We chose the protein complex formed between the transcriptional regulators LMO2 and ldb1 as a test case. We have examined this interaction in detail in our laboratory, and determined its three-dimensional structure. Furthermore, inappropriate formation of this complex is implicated in the onset of T-cell acute lymphoblastic leukemia. We therefore sought to use phage display to engineer ldb1 mimics that could potentially compete against wild-type ldb1 for LMO2, and this work is described in Chapter 4. Using a phage library containing ~3 x 10 7 variants of the LMO2-binding region of ldb1, we isolated mutants that were able to interact with LMO2 with higher affinity and specificity than wild-type ldb1. These ldb1 mutants represent a first step towards finding potential therapeutics for treating LMO-associated diseases. Having established phage display in our laboratory, we went on to search for PHD mutants that could bind selected target proteins. This work is described in Chapter 5. We created three PHD libraries with eight randomized residues in each of L1, L3 or in both loops of the PHD. These PHD libraries were then screened against four target proteins. After four rounds of selection, we were able to isolate a PHD mutant (dubbed L13-FH6) that could bind our test protein Fli-ets. This result demonstrates that a novel function can be imparted to the PHD using combinatorial methods and opens the way for further work in applying the PHD scaffold to other protein design work. In summary, the work detailed in Chapters 3 and 5 demonstrates that the PHD possesses many of the properties that are desirable for a protein scaffold for molecular recognition, including small size, stability, and a well-characterised structure. Moreover, the PHD motif possesses two loops (L1 and L3) of substantial size that can be remodeled for target binding. This may lead to an enhancement of binding affinities and specificities over other small scaffolds that have only one variable loop. In light of the fact that PHDs are mainly found in nuclear proteins, it is reasonable to expect that engineered PHDs could be expressed and function in an intracellular environment, unlike many other scaffolds that can only function in an oxidizing environment. Therefore, our results together with other currently available genomic and functional information indicate PHD is an excellent candidate for a scaffold that could be used to modify cellular processes. Appendices 1 and 2 describe completed bodies of work on unrelated projects that I have carried out during the course of my PhD candidature. The first comprises the invention and application of DNA sequences that contain all N-base sequences in the minimum possible length. This work is presented as a reprint of our recently published paper in Nucleic Acids Research. The second Appendix describes our structural analysis of an antifreeze protein from the shorthorn sculpin, a fish that lives in the Arctic and Antarctic oceans. This work is presented as a manuscript that is currently under review at the Journal of the American Chemical Society.
|
Page generated in 0.0753 seconds