21 |
Load-induced damage evaluation in reinforced concrete structures using dynamic response signaturesTan, Hock Chuan January 2000 (has links)
The purpose of this thesis is to assess and develop a non-destructive evaluation (NDE) procedure for evaluating the integrity of rectangular and square reinforced concrete (RC) slabs. This procedure employs both dynamic frequency and deformation response signatures to track changes in the slab following dynamic excitation. Such a procedure could provide a good basis for practising engineers to conduct nondestructive testing (NDT) and evaluation of general RC structures. The response of RC floor slabs to dynamic excitation have been experimentally studied at 1/3rd scale for two aspect ratios (square and rectangular), three concrete grades, and with and without cement replacement under clamped edge conditions. The model slabs were subjected to series of quasi-static loading and unloading sequences, to increasing load levels until failure was reached. At the unloaded part of each load cycle, the slabs were subjected to dynamic excitations, alternately using a hand-held, Bruel and Kjaer (B and K) impact hammer, and broad-band burst chirp shaker excitation. For the larger square slabs, at each unloaded part of the load cycle, a 265 gm steel ball bearing dropped from a fixed, standard height to provide more robust impulse excitation. All of the slabs were instrumented with optimally located accelerometers and strain gauges to capture the slab responses. The acceleration, deflection and strain readings resulting from the dynamic excitation were recorded at incremental load steps, from the initial unloaded state up to failure, and subsequently evaluated and analysed. The results show that the changes resulting from damage are readily observable, in the fundamental and higher modes of vibration and in the load-deflection and strain responses. These changes have been examined and analysed in both the time and frequency domains, and using other techniques, to establish the viability of this approach in evaluating the integrity of RC and other complex structures.
|
22 |
Nondestructive assessment of pile tip elevationsRhodes, Patrick Bryan 12 1900 (has links)
No description available.
|
23 |
Non-uniform AC field measurement in NDE of metals : analysis and an array systemMostafavi, Reza January 1998 (has links)
No description available.
|
24 |
The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground probing radarGiannopoulos, Antonios January 1998 (has links)
No description available.
|
25 |
Ultrasonic compression wave evaluation of adhered metal sheets and thin sheet materialsFreemantle, Richard James January 1995 (has links)
No description available.
|
26 |
Ultrasonic reflection tomography over circular aperture /Liu, Wai-yin. January 1992 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1993.
|
27 |
Numerical models for Rayleigh wave scattering from surface featuresBlake, Richard John January 1988 (has links)
No description available.
|
28 |
A Study to Develop a Curriculum in Industrial Destructive Testing Procedures for Ferrous and Non-Ferrous Metals at the University LevelGeary, Michael Robert 05 1900 (has links)
The problem of this study was to develop a curriculum based on present destructive testing procedures used in industry dealing with the mechanical properties of ferrous and non-ferrous metals, and to organize the curriculum at the university level.
|
29 |
High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics / Hochauflösende Röntgenbildgebung auf Basis einer Flüssigmetall-Anoden-Quelle mit und ohne RöntgenoptikenFella, Christian January 2016 (has links) (PDF)
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of everincreasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding and quality assurance of microscopic species, in particular as it allows reconstructing three-dimensional data sets of the whole sample’s volumevia computed tomography (CT).
The following thesis describes the conceptualization, design, construction and characterization of a compact laboratory-based X-ray microscope in the hard X-ray regime around 9 keV, corresponding to a wavelength of 0.134 nm. Hereby, the main focus is on the optimization of resolution and contrast at relatively short exposure times. For this, a novel liquid-metal-jet anode source is the basis. Such only recently commercially available X-ray source reaches a higher brightness than other conventional laboratory sources, i.e. the number of emitted photons (X-ray quanta) per area and solid angle is exceptionally high. This is important in order to reach low exposure times. The reason for such high brightness is the usage of the rapidly renewing anode out of liquid metal which enables an effective dissipation of heat, normally limiting the creation of high intensities on a small area.
In order to cover a broad range of different samples, the microscope can be operated in two
modes. In the “micro-CT mode”, small pixels are realized with a crystal-scintillator and an
optical microscope via shadow projection geometry. Therefore, the resolution is limited by the emitted wavelength of the scintillator, as well as the blurring of the screen. However, samples in the millimeter range can be scanned routinely with low exposure times. Additionally, this mode is optimized with respect to in-line phase contrast, where edges of an object are enhanced and thus better visible.
In the second “nano-CT mode”, a higher resolution can be reached via X-ray lenses. However,
their production process is due to the physical properties of the hard X-ray range - namely high absorption and low diffraction - extremely difficult, leading typically to low performances. In combination with a low brightness, this leads to long exposure times and high requirements in terms of stability, which is one of the key problems of laboratory-based X-ray microscopy. With the here-developed setup and the high brightness of its source, structures down to 150 nm are resolved at moderate exposure times (several minutes per image) and nano-CTs can be obtained. / Mit zunehmender Miniaturisierung in Industrie und Medizintechnik werden zerstörungsfreie
Prüfverfahren immer wichtiger. In diesem Umfeld bietet Röntgenmikroskopie ein effizientes Instrument zu Analyse, Verständnis und Qualitätssicherung mikroskopischer Proben, insbesondere da sie im Rahmen der Computer-Tomografie (CT) die Aufnahme dreidimensionaler Datensätze des gesamten Probenvolumens ermöglicht.
Die vorliegende Arbeit befasst sich mit Konzeption, Design, Aufbau und Charakterisierung
eines kompakten Labor-Röntgenmikroskops im harten Röntgenbereich bei 9 keV, bzw. einer
Wellenlänge von 0.134 nm. Im Fokus liegt dabei die Optimierung von Auflösung und Kontrast
bei möglichst kurzen Belichtungszeiten. Hier für bildet die Basis eine neuartige Flüssig-Metall-
Anoden Röntgenquelle. Solche erst seit kurzem kommerziell verfügbare Quellen erreichen eine
höhere Brillianz als konventionelle Laborquellen, d.h. dass die Anzahl der emittierten Photonen
(Röntgenquanten) pro Fläche und Raumwinkel außergewöhnlich hoch ist. Dies ist ein entscheidender Faktor, um nötige Belichtungszeiten zu verringern. Der Grund für die hohe Brillianz ist die Verwendung einer sich sehr schnell erneuernden Anode aus flüssigem Metall. Diese ermöglicht die effektive Abfuhr von Wärme, welche normalerweise die Erzeugung von höheren Intensitäten auf kleinerer Fläche limitiert.
Um ein möglichst großes Spektrum an Proben abzubilden, kann das Mikroskop in zwei Modi
betrieben werden. Im ”Mikro-CT Modus“ werden kleine Pixel mit Hilfe eines Kristall-Leuchtschirms und einem Lichtmikroskop über das Schattenwurfprinzip erreicht, weswegen dessen Auflösung durch die Wellenlänge des emittierten Lichts und die Unschärfe des Schirms beschränkt ist. Dafür können Proben im Millimeterbereich bei geringen Belichtungszeiten standardmäßig aufgenommen werden. Zudem wurde dieser Modus auf inline Phasen-Kontrast optimiert, bei welchem die Kanten eines Objekts durch Interferenz überhöht dargestellt werden und somit besser sichtbar sind.
Im zweiten ”Nano-CT Modus“ kann eine erhöhte Auflösung mit Hilfe von Röntgenlinsen erreicht
werden. Deren Herstellung ist aber aufgrund der physikalische Eigenschaften im harten
Röntgenbereichs - nämlich starke Absorption und schwache Brechung - technisch extrem
schwierig und meist mit einer sehr geringe optischen “Leistung” verbunden. Dies führt in Kombination mit einer geringen Brillianz zu sehr langen Belichtungszeiten und hohen Anforderungen an die Stabilität, was ein Kernproblem der auf Laborquellen basierenden Röntgenmikroskope darstellt. Mit der hier entwickelten Anlage können durch die hohe Brillianz der verwendeten Quelle bei moderaten Belichtungszeiten (wenige Minuten pro Bild) Strukturen der Größe 150 nm voneinander getrennt, sowie Nano-CTs aufgenommen werden.
|
30 |
An automated damage detection system for armoured vehicle launched bridgeSazonov, Eduard S. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xi, 187 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 148-154).
|
Page generated in 0.0211 seconds