• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Memristor based SRAM

Kotte, Aparna Reddy 01 December 2020 (has links)
AN ABSTRACT OF THE THESIS OFAPARNA REDDY KOTTE, for the Master of science degree in Electrical and Computer Engineering, presented on November 5,2020, at Southern Illinois University Carbondale. TITLE: MEMRISTOR BASED SRAM MAJOR PROFESSOR: Dr. Haniotokis Themistoklis The easy usage and less standby leakage are the main reasons SRAMs are mostly used for mobile applications both on chip and off chip memories. Various SRAM cells have been under research for many years. In post-CMOS era, rising of memristor technology is expected to be a key driver due to its outstanding features to replace the present memory technologies. Memristor is a non-volatile component that memorizes the proportion of current passed through it, reserving the data in the form of resistance. With its non-volatile characteristics, ultra-low power consumption, higher density capability, fast operating speed, ability to function as a multi-level cell and good scalability and compatibility with CMOS technology, memristor technology is found to be best to replace the SRAM cells. Memristor based SRAM cell can be an efficient circuit component that is being proposed in this thesis which consumes less power and allows the conventional SRAM cell to retain data with lesser number of transistors at power-down without any auxiliary circuit. This thesis contains the operating procedure and simulated results of the proposed four transistor and two memristor SRAM using 90nm technology performed on Cadence Virtuoso tool.

Page generated in 0.015 seconds