• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thesis_BZhao.pdf

Bailu Zhao (15347395) 03 May 2023 (has links)
<p>Northern peatlands (>45°N) mostly initiated during the Holocene and have been a large C sink to the atmosphere. Northern peatland formation prefers wet and cold condition where the productivity persistently exceeds decomposition and thereby C accumulates. As the northern high latitude region is likely to be warmer in the future, whether northern peatlands will continue being C sinks or switch to C sources is uncertain. To address this issue, I revise and apply a process-based model designed for describing peatland biogeochemical processes, Peatland Terrestrial Ecosystem Model (PTEM), to simulate the C dynamics at both site and regional level, from 15 ka BP-2300. For the site-level simulation, PTEM 1.0 is substantially revised into PTEM 2.0 in terms of peat accumulation process, plant functional types, productivity and decomposition, and soil thermal properties. A simulation from peat initiation to 2300 is conducted for three northern peatland sites. I found PTEM 2.0 can effectively capture the historical C accumulation progress, when compared with the observation. The future simulation indicates northern peatlands have reduced C sink capacity or switch to a C source under N insufficiency and water table deepening. </p> <p>Afterwards, a historical pan-Arctic simulation during 15ka BP-1990 is conducted. PTEM 2.0 is revised into PTEM 2.1 by adding spatially-explicit run-on and run off processes. The spatially-explicit peat initiation dataset is derived from neural network approach and a spatially-explicit peat expansion trend is established on top of it. My estimated pan-Arctic peatland C storage is 396-421 Pg C with the long-term C accumulation rate (CAR) of 22.9 g C∙m-2 yr-1. The simulated spatial distribution of peat C and the temporal pattern of CAR both agree with literature values. I analyzed northern peatlands’ response to historical climate change since 0.5 ka BP and found decreased CAR in the warmer non-permafrost and permafrost-thaw region, while the opposite was found in the colder permafrost region. The results indicate warmer southern peatlands will first switch to a C source under warming while more northern peatlands will become larger sinks. </p> <p>Based on the result of historical simulation, a future simulation is conducted for 1990-2300 with peatland expansion/shrinkage considered. PTEM 2.1 is revised into PTEM 2.2 such that the water table depth, run-on and run-off are estimated from a TOPMODEL approach. In the 21st century, northern peatlands are projected to be a C source of 1.2-13.3 Pg C under five out of six climate scenarios. During 2100-2300, northern peatlands under all scenarios are a C source under all climate scenarios. Northern peatlands switch to C sources due to deepening water table depth, insufficient N availability, and plant functional type shift. I found that northern peatlands remain as a C sink until a mean pan-Arctic peatlands annual temperature reaches -2.09 - -2.89°C. This study predicts a northern peatland sink to a source shift around 2050, earlier than previous estimates of after 2100, and emphasizes the vulnerability of northern peatlands to climate change. </p>

Page generated in 0.033 seconds