• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 55
  • 42
  • 30
  • 26
  • 24
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 546
  • 91
  • 77
  • 76
  • 76
  • 51
  • 51
  • 45
  • 40
  • 40
  • 40
  • 38
  • 37
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Optimalizace tepelného zpracování a volby materiálu průmyslových nožů na zpracování dřeva / Optimalization of Heat Treatment and Choice of Material for Woodworking Industrial Knifes

Nevřala, Martin January 2008 (has links)
The aim of this thessis is heat treatment and choice of material for Woodworking optimalization. Industrial Knives in conjunction with company Pilana Tools Knives. Knives of this company are used in different parts of the world, among others in northern states too, where are working in extreme conditions about temperature low below of freezing point. That’s why was tested many samples in another working conditions.
412

Implication du facteur IKAROS dans la régulation des gènes cibles de la voie NOTCH dans les cellules érythroïdes

Lemarié, Maud 01 1900 (has links)
IKAROS est un facteur de transcription majeur dans l’hématopoïèse qui agit en recrutant à la chromatine de nombreux partenaires décisifs dans le renouvellement cellulaire et l’engagement vers des lignages spécifiques. Il est notamment requis dans les cellules lymphoïdes pour réprimer les gènes cibles de la voie de signalisation NOTCH. IKAROS est aussi important dans le développement des cellules érythroïdes dans lesquelles il facilite le passage d’une globine fœtale à adulte chez l’embryon grâce au recrutement des complexes remodeleurs de la chromatine NuRD et BAF. En condition normale, la voie de signalisation NOTCH réprime la différenciation en cellules érythroïdes. Il est donc important que les gènes cibles de la voie NOTCH soient finement régulés afin d’amener une cellule progénitrice à se différencier en érythrocyte énucléé. Dans les cellules hématopoïétiques, incluant les cellules érythroïdes, IKAROS est un régulateur important du gène Hes1, cible effectrice majeure de la voie NOTCH. En effet, IKAROS participe activement à la répression du gène Hes1, permettant le développement des cellules érythroïdes. Nous avons donc émis l’hypothèse que dans ces cellules, IKAROS pourrait avoir une action plus généralisée sur le contrôle des gènes ciblés par NOTCH, comme observé dans les cellules lymphoïdes. Il pourrait ainsi agir en recrutant les complexes enzymatiques nécessaires à la régulation de ces gènes comme NuRD et BAF afin d’assurer le développement des cellules érythroïdes. Étant donné que la régulation des gènes est aussi dépendante du motif de méthylation de l’ADN, nous avons étendu notre questionnement à cet autre aspect de la régulation qu’IKAROS pourrait utiliser pour contrôler les gènes de la voie NOTCH. Pour ce faire, nous avons procédé à l’analyse bio-informatique d’un séquençage d’ARN de cellules érythroïdes murines préalablement réalisé au laboratoire afin d’en extraire les gènes régulés par IKAROS, mais aussi par NOTCH. L’analyse nous a permis d’extraire deux motifs d’expression intéressants observés dans les cellules érythroïdes pour lesquels IKAROS réprime ou active des gènes qui sont normalement réceptifs à l’activation de la voie NOTCH. Parmi les gènes réprimés par IKAROS en sont ressortis les gènes cibles de NOTCH Cdkn1a (P21WAF1/CIP1) et Trp53 (TP53), dont l’expression augmente fortement quand IKAROS est muté et que NOTCH est actif. Parmi les gènes activés par IKAROS en sont ressortis les gènes cibles de NOTCH Prdm16 et Nrarp, dont l’expression diminue fortement quand IKAROS est muté et que NOTCH est actif. IKAROS est donc un régulateur pouvant être répresseur, mais aussi activateur d’une multitude de gènes ciblés par NOTCH dans les cellules érythroïdes. Par des expériences d’immunoprécipitation de la chromatine, nous avons pu observer qu’IKAROS semblait toujours agir en partenariat avec le complexe NuRD et que la présence du complexe BAF était plutôt dépendante de la voie NOTCH. L’association IKAROS-NuRD semble servir de plateforme pour imposer un état de chromatine bivalente (avec co-présence de H3K4me3 et de H3K27me3) associée à une pause transcriptionnelle. Dans ce contexte, les éléments nécessaires à l’initiation de la transcription (présence de la marque H3K4me3) des gènes ciblés par NOTCH sont recrutés mais, l’élongation transcriptionnelle est affectée. L’état de chromatine bivalente peut être associé à l’activité des déméthylases de l’ADN Ten-Eleven-Translocation (TET) qui empêchent alors l’hyperméthylation de ces régions. Nos résultats démontrent qu’IKAROS peut utiliser la protéine TET1 pour réguler des gènes cibles de la voie NOTCH, en y formant l’hydroxyméthylcytosine (5-hmC). Celle-ci peut aussi marquer les régions de régulation génique caractérisées par une chromatine bivalente et une pause transcriptionnelle. Ces travaux décrivent IKAROS comme un facteur agissant de façons multiples dans la régulation des gènes cibles de NOTCH dans les cellules érythroïdes. Nous proposons qu’IKAROS et son partenaire NuRD soient requis pour mettre en place un état de chromatine bivalente et de pause transcriptionnelle pour faciliter l’activation physiologique des gènes cibles de NOTCH lors de la signalisation. IKAROS peut ainsi prendre part à l’activation ou la répression de gènes cibles de NOTCH, tout en facilitant la déméthylation de l’ADN ainsi que le recrutement d’éléments transcriptionnels qui favorisent un état de pause transcriptionnelle. NOTCH ainsi que d’autres éléments de régulation sont alors requis pour induire l’activation ou la répression des gènes cibles. / IKAROS is a critical transcription factor in hematopoiesis. It facilitates the chromatin binding of many important co-factors required for chromatin organization during cell renewal and lineage commitment. IKAROS is particularly important in lymphoid cells whereby it is involved in the repression of target genes of the NOTCH signaling pathway. IKAROS is also important in the development of other hematopoietic lineages, including the erythroid cells, in which it facilitates the passage of a fetal to adult globin in the embryo through the recruitment of the chromatin remodeling complexes NuRD and BAF. Under normal conditions, the NOTCH signaling pathway represses development of erythroid cells. It is therefore important to precisely understand how the NOTCH target genes are regulated during passage from hematopoietic progenitor to the enucleated circulating erythrocyte. IKAROS has been demonstrated to be an important regulator of Hes1 gene expression in hematopoietic cells of different lineages. Hes1 is the major effector target of the NOTCH pathway and IKAROS actively participates in its repression. In erythroid cells, the regulation of Hes1 imposed by IKAROS is required for terminal differentiation. We therefore investigated the importance of IKAROS in the regulation of NOTCH-targeted genes in erythroid cells. The combined effect of the mutation of IKAROS with NOTCH signaling was particularly investigated in these cells. To define how IKAROS influences the regulation of NOTCH target genes, we performed the bioinformatics analysis of a RNA-sequencing performed in murine erythroid cells activated or not for NOTCH signaling and whereby IKAROS is absent. We identified genes influenced by IKAROS expression and by NOTCH, and defined the effect of the combination of the absence of IKAROS expression and NOTCH pathway activation. Two particular expression patterns were identified and characterized the combined effect of the absence of IKAROS and NOTCH pathway activation in erythroid cells. Indeed, the absence of IKAROS either favors the overexpression of NOTCH target genes or prevents their response to NOTCH pathway activation. To understand how IKAROS could have an opposite effect on different NOTCH target genes we analysed the effect of IKAROS on their regulation. Among the genes repressed by IKAROS are the target genes of NOTCH Cdkn1a (encoding the P21WAF1/CIP1 protein) and Trp53 (encoding the TP53 protein), whose expression increases strongly when IKAROS is mutated and the NOTCH pathway is activated. Prdm16 and Nrarp are, instead, requiring IKAROS expression for their activation by NOTCH. The characterization of these NOTCH target genes suggests that IKAROS can work in partnership with the NuRD complex to influence the expression. The chromatin characterization of these genes led us to posit that the IKAROS-NuRD could act as a ‘platform’ to impose a bivalent chromatin organization associated with poised transcription. Then, the regulation imposed by IKAROS-NuRD would be required for the physiological activation of NOTCH targets upon external signaling. Finally, since in embryonic stem cells the Ten-Eleven Translocation (TET) enzymes are reported to be frequently associated to bivalent chromatin in order to prevent DNA hypermethylation, we assessed whether IKAROS could interact and ‘use’ TET enzymes to regulate NOTCH target genes. We determined that IKAROS can co-immunoprecipitate with the TET1 enzymes. We show that IKAROS influences both recruitment and activity of TET1 to different NOTCH target genes and favors the accumulation of hydroxymethylcytosine (5-hmC) to these genes. 5-hmC can be considered as a mark of transcriptional pausing/bivalence. Thus, these studies bring new information on the mechanism used by IKAROS to influence gene regulation in hematopoietic cells. Our results suggest that IKAROS primary function is to organize a bivalent chromatin and to promote transcriptional pausing to multiple NOTCH target genes. IKAROS is required to set the epigenetic and promoter organization for rapid activation upon NOTCH signaling.
413

Impact of the Maturation Status of Osteoblasts on Their Hematopoietic Regulatory Activity

Alsheikh, Manal January 2017 (has links)
Osteoblasts (OST) provide strong intrinsic growth modulatory activities on hematopoietic stem and progenitor cells via different mechanisms that include secretion of growth factors, and cellular interaction. Previously we showed that medium conditioned by mesenchymal stromal cell (MSC)-derived osteoblasts (M-OST) improve the expansion of cord blood (CB) CD34+ cells. I hypothesize that the hematopoietic supporting activity of M-OST would vary as a function of their maturation. This was tested by producing osteoblast conditioned media (OCM) from M-OST at distinct stages of maturation, and testing their growth regulatory activities in CB CD34+ cell cultures. My results showed that some of the growth promoting activity of OCM on CB cells are not dependent on the maturation status, while others are and those are largely independent of Notch signalling. In conclusion, these results provide further evidence that osteoblasts release factors that can promote the growth of immature CB progenitors in a Notch-independent way.
414

Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells / ヒト多能性幹細胞から近位気道上皮スフェロイドを介して機能的な繊毛上皮細胞を分化させる

Konishi, Satoshi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19592号 / 医博第4099号 / 新制||医||1014(附属図書館) / 32628 / 京都大学大学院医学研究科医学専攻 / (主査)教授 斎藤 通紀, 教授 伊達 洋至, 教授 上杉 志成 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
415

B cells with aberrant activation of Notch1 signaling promote Treg and Th2 cell-dominant T cell responses via IL-33 / Notch1シグナルが異常活性化したB細胞はIL-33を介して制御性T細胞および2型ヘルパーT細胞優位のT細胞免疫応答を促進する

Arima, Hiroshi 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21451号 / 医博第4418号 / 新制||医||1032(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 椛島 健治, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
416

Mechanistic Insights into the Regulation of the E-selectin Ligand Activities of Breast Cancer Cells by microRNA-200c, Notch Signaling, and Exosomal microRNAs

Showalter, Christian A. 28 September 2020 (has links)
No description available.
417

Function of the Notch/Delta Pathway in Ophthalmic Trigeminal Placode Development

Ball, Matthew K. 14 July 2009 (has links) (PDF)
The ophthalmic trigeminal placode (opV) is the birth place of one cell type of sensory neurons contributing to the trigeminal ganglion. Signals from the neural tube induce placodal identity within the surface ectoderm. Specified opV placode cells then up-regulate neuron differentiation markers and migrate to the ganglion. Several molecular pathways have been shown to act in opV placode cell development. Despite this, signals that specify individual neurons from within the opV placode remain unknown. However, it is known that components of the Notch signaling pathway are expressed in the opV placode. I tested the role of Notch signaling in opV placode development by separately inhibiting and over-activating the pathway. Using DAPT, an inhibitor of gamma-secretase, I inhibited Notch signaling in 13-15 somite stage chick embryo heads. Attenuated Notch signaling caused increased neuronal differentiation of opV cells at 13-15 somites. I also observed an increase in migratory opV placode (Pax3+) cells in the mesenchyme and expression of neuronal marker Islet1 in the ectoderm. Further, I activated Notch signaling by misexpressing the Notch intracellular domain (NICD) by in ovo electroporation of 10-12 somite stage chick embryos. This resulted in Pax3+ targeted cells failing to differentiate and remain instead in the ectoderm. Thus, Notch/Delta signaling plays an important role in selecting ophthalmic trigeminal cells to differentiate and migrate to the trigeminal ganglion.
418

Regulation of Sensory Neurogenesis in the Trigeminal Placode: Notch Pathway Genes, Pax3 Isoforms, and Wnt Ligands

Adams, Jason Samuel 02 November 2012 (has links) (PDF)
This dissertation is divided into three chapters, each discussing the study of different regulatory molecules involved in sensory neurogenesis occurring in the trigeminal placode. Chapter one is a spatiotemporal description of Notch pathway genes in chick opV placode by stage-specific expression analysis, showing expression of many Notch pathway genes and effectors in the opV placode. Notch pathway gene expression is primarily confined to the ectoderm with highest expression of these genes at the beginning stages of peak neuronal differentiation. This information preceded studies of the functional roles that Notch signaling has in the opV placode and how it may affect the transcription factor, Pax3. Chapter two is a study of the transcription factor Pax3 and its role in opV placode development and sensory neuron differentiation. Pax3 is known to activate or repress gene transcription, and its activity may be dependent on the splice variant or isoform present. We show through RT-PCR that alternative splice forms of Pax3 are present at stages of chick development corresponding to cellular competence, cellular differentiation and ingression, and cellular aggregation. We have named these splice forms, Pax3V1 and Pax3V2. Using quantitative RT-PCR we show that Pax3V2 is consistently expressed at lower levels compared to Pax3 during cellular competence and differentiation. In order to determine the function of the three splice forms, we misexpressed them in the opV placode and analyzed the effect on neurogenesis. We looked at markers for neuronal differentiation of targeted cells after in ovo electroporation of Pax3, Pax3V1, and Pax3V2, which showed a significant difference between the control and each construct, but not between the groups of constructs. To enhance the process of neurogenesis we exposed the electroporated embryos to DAPT, a Notch signaling inhibitor that enhances sensory neurogenesis. Using this method we found that misexpression of Pax3 and Pax3V1 resulted in cells failing to differentiate, while Pax3V2 misexpression more closely resembles the neuronal differentiation seen in controls. These results show that the Pax3V2 isoform allows for neuronal differentiation of opV placodal cells after misexpression, while the Pax3 isoform and the Pax3V1 isoform block neuronal differentiation. Chapter three is a study of the necessity of Wnt signaling originating from the neural tube to induce Pax3 expression in the opV placode. A double knockout of Wnt1 and Wnt3a was produced to determine the necessity of these genes in opV placode development. Pax3 expression in the opV placode at E8.5 and E9.5 was markedly reduced in the double mutants when compared to wild type mice. This study shows that Wnt1 and Wnt3a genes are necessary for normal Pax3 expression, but that other signals may contribute to its induction.
419

A Simplified Approach to Thermomechanical Fatigue and Application to V-shaped Notches

Bouchenot, Thomas 01 August 2013 (has links)
A vast array of high value parts in land- and air-based turbomachinery are subjected to non-isothermal cycling in the presence of mechanical loading. Crack initiation, growth and eventual failure more significantly reduce life in these components compared to isothermal conditions. More accurate simulation of the stress and strain evolution at critical locations of components, as well as test specimens, can lead to a more accurate prediction of remaining life to a structural integrity specialists. The focus of this thesis is to characterize the effects of thermomechanical fatigue (TMF) on generic turbomachinery alloy. An expression that can be used to estimate the maximum and minimum stress under a variety of loading conditions is formulated. Analytical expressions developed here are modifications of classic mechanics of materials methods (e.g. Neuber's Rule and Ramberg-Osgood). The novel models are developed from a collection of data based on parametric finite element analysis to encompass the complex load history present in turbine service conditions. Relevance of the observations and formulated solutions are also explored for the case of a tensile specimen containing a v-shaped notch. Accurate estimations of non-isothermal fatigue presented here endeavor to improve component lifing and decrease maintenance costs.
420

NOTCH SIGNALING REGULATES STEMNESS AND METABOLISM OF LIPOSARCOMA CELLS

Pei Chieh Tien (14232620) 09 December 2022 (has links)
<p>Liposarcoma (LPS) arises from adipocytes and is a rare malignancy among all cancer types, but represents the most common form of soft tissue sarcoma, with approximately 2,000 new cases reported annually. Clinically, liposarcomas are classified into four subtypes based on histological analysis: well-differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma (DDLPS), myxoid/round cell liposarcoma, and pleomorphic liposarcoma. Although histological analysis provides useful information for identifying various liposarcoma subtypes, treatment options rely on a fundamental understanding of driver mutations and molecular mechanisms underlying tumorigenesis. This thesis focuses on elucidating important driver mutations and therapeutic targets to eradicate DDLPS. Notch signaling is an evolutionarily conserved signaling pathway essential for organ development and stem cell function. Aberrant Notch signaling underlies the tumorigenesis of many cancers including LPS. However, the specific role of Notch signaling in development of LPS remains elusive. In Chapter 2, I provide evidence demonstrating that Notch signaling plays a key role in cancer stem cells (CSCs), also referred to as tumor-initiating cells (TICs), that drive aggressive DDLPS. I used serial transplantation to enrich and generate a murine DDLPS cell line with constitutively activated Notch signaling (NICDOE). My analyses revealed that NICDOE DDLPS cells are heterogeneous and contain TICs that express cancer stem cell markers. Chapter 3 elucidates how Notch signaling regulates CSCs of LPS. I analyzed human LPS samples to establish a strong correlation between Notch signaling activation and tumor marker expression and prognosis. I further performed gene expression and metabolic analyses of NICDOE DDLPS cells. These assays revealed that NICDOE reduced mitochondrial respiration in DDLPS cells, which was associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis. CRISPR/CAS9-mediated deletion of the NICDOE cassette rescued the expression of PGC-1α and mitochondrial respiration in DDLPS cells. Similarly, overexpression of PGC-1α was sufficient to rescue mitochondrial biogenesis in DDLPS cells. Together, these data demonstrate that Notch signaling regulates CSCs, at least partially by controlling PGC-1α mediated mitochondria biogenesis.</p>

Page generated in 0.0584 seconds