• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 83
  • 46
  • 45
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 699
  • 131
  • 81
  • 76
  • 70
  • 63
  • 61
  • 60
  • 55
  • 48
  • 45
  • 44
  • 44
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Growth and characterization of Ru films deposited by chemical vapor deposition : towards enhanced nucleation and film properties

Thom, Kelly Marriott 03 June 2010 (has links)
As device dimensions in integrated circuits scale down, there is an increasing need to deposit ultra-thin, smooth, continuous films for use in applications such as the liner in back end processing. The liner must have good adhesion to both Cu and the dielectric, act as a Cu diffusion barrier, and be conductive enough to allow the electroplating of Cu. Ruthenium (Ru) has been considered as a possible material to be implemented into the liner due to its low electrical resistivity, high thermal and chemical stability, and negligible solubility with copper. Chemical vapor deposition (CVD) is an attractive growth technique for Ru films because it allows conformal deposition in high-aspect ratio features. However, there are some limitations that must be overcome in the deposition of Ru films. CVD Ru films suffer from poor nucleation on oxide and nitride substrates. Poor nucleation leads to rough, large-grained polycrystalline columnar films, which may not coalesce into a continuous film until the thickness greatly exceeds the requirements for the liner. This dissertation presents surface chemistry and film growth studies involving Ru CVD and focuses on improving the nucleation and properties of Ru films. In situ surface analysis techniques including X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to study the fundamental adsorption behavior of the Ru precursor, (2,4- dimethylpentadienyl)(ethylcyclopentadienyl)Ru or DER, on polycrystalline Ta, both with and without iodine adsorbed on the Ta. Based upon these results, CVD films were grown using DER/O₂, and it was shown that nucleation and film properties can be improved by the addition of methyl iodide. Ru films grown using DER/O₂ show sparse nucleation, which leads to very rough surface topography and large polycrystalline columnar grains. The addition of methyl iodide during growth significantly improves nucleation and results in smoother, smaller-grained films. Iodine adsorbs on the initially-formed Ru islands and continuously segregates through the film to the surface during the entire deposition. In addition, CVD films grown with Ru₃(CO)₁₂ were studied. Use of the Ru₃(CO)₁₂ precursor results in thin, ultra-smooth films that show little to no columnar grain structure. / text
152

VOLTAMMETRIC, ELECTROCHROMIC, AND SURFACE CHARACTERIZATION OF N-HEPTYL VIOLOGEN ON CHEMICALLY MODIFIED TIN OXIDE AND INDIUM OXIDE METALLIZED PLASTIC ELECTRODE FILMS.

CIESLINSKI, ROBERT CHARLES. January 1982 (has links)
Voltammetric and spectroelectrochemical results are presented for the one-electron reduction of n-heptyl viologen on clean and silane-modified tin oxide, and on ion-beam modified, indium-tin oxide metallized plastic optically transparent electrodes (ITO MPOTE) surfaces. The use of viologens (dialkyl and diaryl 4,4' bipyridium compounds) in redox chromic displays is well known with a number of papers and patents discussing their use. The ability to vary the coloration rates of the electrochromic reaction of these compounds can be strongly influenced by the state of the electrode surface. Potential-step experiments, where the electrode potential is controlled at low overpotentials, has shown that the viologen reduction occurs through a nucleation process. The work here indicates that an "instantaneous nucleation" model appears to be the favored pathway for the n-heptyl viologen reaction. Chronoabsorptometric analysis of the nucleation process is made possible by monitoring the strongly absorbing viologen cation radical. Chronoabsorptometric data can be used to calculate the nucleation site density on an electrode surface. On silane-modified and ion-beam modified electrode surfaces, a more preferred nucleation site is found for the deposition of the first monolayers of viologen. Through the attachment of a silane or the ion-beam modification of an ITO metallized plastic film (ITO MPOTE), a nonpolar layer is created adjacent to the electrode surface. Prior to electrochemical reduction the n-heptyl viologen dication is partioned and concentrated into this nonpolar layer. The effect is a preconcentration of the viologen next to the electrode surface resulting in a fixed number of nucleation sites and an enhancement of the nucleation rate.
153

Nucleation and Growth of Dielectric Films on III-V Semiconductors During Atomic Layer Deposition

Granados-Alpizar, Bernal January 2012 (has links)
In order to continue with metal-oxide-semiconductors (CMOS) transistor scaling and to reduce the power density, the channel should be replaced with a material having a higher electron mobility, such as a III-V semiconductor. However, the integration of III-V's is a challenge because these materials oxidize rapidly when exposed to air and the native oxide produced is characterized by a high density of defects. Deposition of high-k materials on III-V semiconductors using Atomic Layer Deposition (ALD) reduces the thickness of these oxides, improving the semiconductor/oxide interface quality and the transistor electrical characteristics. In this work, ALD is used to deposit two dielectrics, Al₂O₃ and TiO₂, on two III-V materials, GaAs and InGaAs, and in-situ X-ray photoelectron spectroscopy (XPS) and in-situ thermal programmed desorption (TPD) are used for interface characterization. Hydrofluoric acid (HF) etching of GaAs(100) and brief reoxidation in air produces a 9.0 ± 1.6 Å-thick oxide overlayer containing 86% As oxides. The oxides are removed by 1 s pulses of trimethylaluminum (TMA) or TiCl₄. TMA removes the oxide overlayer while depositing a 7.5 ± 1.6 Å thick aluminum oxide. The reaction follows a ligand exchange mechanism producing nonvolatile Al-O species that remain on the surface. TiCl₄ exposure removes the oxide overlayer in the temperature range 89°C to 300°C, depositing approximately 0.04 monolayer of titanium oxide for deposition temperatures from 89°C to 135°C, but no titanium oxide is present from 170°C to 230°C. TiCl₄ forms a volatile oxychloride product and removes O from the surface while leaving Cl atoms adsorbed to an elemental As layer, chemically passivating the surface. The native oxide of In(0.53)Ga(0.47)As(100) is removed using liquid HF and gas phase HF before deposition of Al₂O₃ using TMA and H₂O at 170°C. An aluminium oxide film with a thickness of 7.2 ± 1.2 Å and 7.3 ± 1.2 Å is deposited during the first pulse of TMA on liquid and gas phase HF treated samples, respectively. After three complete ALD cycles the thickness of the aluminum oxide film is 10.0 ± 1.2 Å on liquid HF treated and 6.6 ± 1.2 Å on gas phase HF treated surfaces. Samples treated with gas phase HF inhibit growth. Inhibition is caused by residual F atoms that passivate the surface and by surface poisoning due to the thicker carbon film deposited during the first pulse of TMA. On InGaAs covered by native oxide, the first TMA pulse deposits 9 Å of aluminum oxide, and reaches saturation at 13 Å after 15 pulses of TMA. The film grows by scavenging oxygen from the substrate oxides. Substrate oxides are reduced by the first pulse of TMA even at 0°C. At 0°C, on a 9 Å thick Ga-rich oxide surface, 1 pulse of TMA mainly physisorbs and a limited amount of aluminum oxide is deposited. At 0°C, 110°C, and 170°C, more aluminum oxide is deposited on surfaces initially containing As oxide, and larger binding energy (BE) shifts of the O 1s peak are observed compared to surfaces that contain Ga oxides only, showing that As oxides improve the nucleation of Al₂O₃.
154

Laboratory Studies of Deposition Mode Heterogeneous Ice Nucleation: Effect of Ice Nuclei Composition, Size and Surface Area

Kanji, Zaminhussein Abdulali 18 February 2010 (has links)
The indirect aerosol effect contributes to major uncertainties in determining the radiation budget of the earth. A large uncertainty is due to the formation of ice clouds onto natural or anthropogenic aerosols. Field studies have shown that mineral type particles are often associated with ice crystals in the mid-upper troposphere and given the long residence time in the atmosphere of dust particles (~2 weeks in the absence of precipitation), their contribution to ice formation processes is not fully defined. In order to probe ice formation onto natural mineral dust in a setting where it could be suspended as aerosol, a new continuous flow diffusion chamber (CFDC) was built. This allowed investigations of the effects of total aerosol surface area and particle size. The CFDC was also used in an international inter-comparison of ice nucleation instrumentation to compare efficiencies of soot, biological aerosol (bacteria) and samples of natural desert dusts from different regions of the world. The laboratory observations were parameterized using nucleation rates (Jhet) and contact angles () as described by classical nucleation theory. For both this experimental technique and a static one developed during the candidate’s Masters degree, mineral dust particulate proved to be the most efficient ice nuclei (IN) activating at RH with respect to ice (RHi) as low as 105% at T = 233 K. The efficiency varied with particle size and aerosol surface area (SA). Large particles or higher SA activated at lower RHi than small particles or lower SA. The static chamber was sensitive to the first ice event out of a large SA and therefore gave true onset RHi, which was lower than the onset defined by the CFDC studies, which was not sensitive to a single ice event. In addition the static chamber used a broader size range of particulate matter, including super micron particles while the CFDC particles sizes were restricted to below 0.5 µm. Soot and organic coated dust particles were inefficient IN compared to pure dust. Soot aerosols showed some efficiency at T < 233K where deposition ice formation was apparent. The hygroscopic organics had intermediate ice activity between dusts and alkyl-organics and soot. Bacteria aerosols were active in the deposition mode for T as high as 247 K. Contact angles () computed for ice germs forming onto natural mineral dust were small, 7<  < 29, at 223 K for RH ranging from ice to water saturation. It was concluded that there is no single value for the onset of ice formation in the atmosphere via deposition freezing. The associated contact angles show that there is a distribution of active sites on IN and that not all active sites have the same affinity for initiation of ice formation even within the same aerosol type. This work provides evidence that deposition mode nucleation can be an alternate pathway to homogeneous nucleation when mineral aerosols are present in the troposphere since the high T - low RH conditions required for deposition mode nucleation are more easily encountered in the atmosphere than the low T - high RH required for homogeneous nucleation.
155

Crystallization of metamorphic garnet : nucleation mechanisms and yttrium and rare-earth-element uptake

Moore, Stephanie Jean 03 July 2014 (has links)
This dissertation focuses on two areas of garnet porphyroblast crystallization that have until now remained largely uninvestigated: epitaxial nucleation of garnet porphyroblasts and yttrium and rare earth (Y+REE) uptake in metamorphic garnet. The mechanism of epitaxial nucleation is explored as a step towards determining which aspects of interfaces are significant to interfacial energies and nucleation rates. Garnet from the aureole of the Vedrette di Ries tonalite, Eastern Alps, shows a clear case of epitaxial nucleation in which garnet nucleated on biotite with (110)grt || (001)bt with [100]grt || [100]bt. The occurrence is remarkable for the clear genetic relationships revealed by the microstructures and for its preservation of the mica substrate, which allows unambiguous determination of the coincident lattice planes and directions involved in the epitaxy. Not all epitaxial nucleation is conspicuous; to increase the ability to document epitaxial relationships between garnet and micas, I develop and apply a method for determining whether evidence for epitaxial nucleation of garnet is present in porphyroblasts containing an included fabric. Although the magnitude of uncertainties in orientation measurements for garnets from Passo del Sole (Switzerland), the Nevado Filabride Complex (Spain), and Harpswell Neck (USA) preclude definitive identification of epitaxial relationships, the method has potential to become a viable technique for creating an inventory of instances and orientations of epitaxial nucleation with appropriate sample selection. Using lattice-dynamics simulations, I explore the most commonly documented epitaxial relationship, (110)grt || (001)ms. The range of interfacial energies resulting from variations in the intracrystalline layer within garnet at the interface, the initial atomic arrangement at the interface, and the rotational orientation of the garnet structure relative to the muscovite structure shows that the intracrystalline layer within garnet has the greatest effect on interfacial energy. A complete understanding of the role of intergranular diffusion for yttrium and rare-earth-element uptake in porphyroblastic garnet is critical because the complexities of Y+REE zoning in garnets and the mechanisms of Y+REE uptake have implications for petrologic interpretations and garnet-based geochronology. Y+REE distributions in garnets from the Picuris Mountains (USA), Passo del Sole (USA), and the Franciscan Complex (USA) imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth.
156

Crystallization of metamorphic garnet : nucleation mechanisms and yttrium and rare-earth-element uptake

Moore, Stephanie Jean 04 July 2014 (has links)
This dissertation focuses on two areas of garnet porphyroblast crystallization that have until now remained largely uninvestigated: epitaxial nucleation of garnet porphyroblasts and yttrium and rare earth (Y+REE) uptake in metamorphic garnet. The mechanism of epitaxial nucleation is explored as a step towards determining which aspects of interfaces are significant to interfacial energies and nucleation rates. Garnet from the aureole of the Vedrette di Ries tonalite, Eastern Alps, shows a clear case of epitaxial nucleation in which garnet nucleated on biotite with (110)grt || (001)bt with [100]grt || [100]bt. The occurrence is remarkable for the clear genetic relationships revealed by the microstructures and for its preservation of the mica substrate, which allows unambiguous determination of the coincident lattice planes and directions involved in the epitaxy. Not all epitaxial nucleation is conspicuous; to increase the ability to document epitaxial relationships between garnet and micas, I develop and apply a method for determining whether evidence for epitaxial nucleation of garnet is present in porphyroblasts containing an included fabric. Although the magnitude of uncertainties in orientation measurements for garnets from Passo del Sole (Switzerland), the Nevado Filabride Complex (Spain), and Harpswell Neck (USA) preclude definitive identification of epitaxial relationships, the method has potential to become a viable technique for creating an inventory of instances and orientations of epitaxial nucleation with appropriate sample selection. Using lattice-dynamics simulations, I explore the most commonly documented epitaxial relationship, (110)grt || (001)ms. The range of interfacial energies resulting from variations in the intracrystalline layer within garnet at the interface, the initial atomic arrangement at the interface, and the rotational orientation of the garnet structure relative to the muscovite structure shows that the intracrystalline layer within garnet has the greatest effect on interfacial energy. A complete understanding of the role of intergranular diffusion for yttrium and rare-earth-element uptake in porphyroblastic garnet is critical because the complexities of Y+REE zoning in garnets and the mechanisms of Y+REE uptake have implications for petrologic interpretations and garnet-based geochronology. Y+REE distributions in garnets from the Picuris Mountains (USA), Passo del Sole (USA), and the Franciscan Complex (USA) imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth.
157

Beyond Classical Nucleation Theory: A 2-D Lattice-Gas Automata Model

Hickey, Joseph 10 August 2012 (has links)
Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster’s size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), η (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system’s concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system’s equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as η is increased. Together, these results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of Ess relative to the magnitude of Esw. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however with a slope less than that predicted for a crystal that is uniformly packed at maximum density.
158

Supercooling and Freezing of HNO3/H2O Aerosols

Dickens, Dustin January 2000 (has links)
The freezing kinetics of binary nitric acid/water aerosols is of fundamental importance to the modelling of polar stratospheric clouds and the role they in ozone depletion over the Arctic/Antarctic regions. Cirrus clouds are also often composed of nitric acid solutions, hence an understanding of freezing process in these aerosols also aids in modelling the earth's radiation budget and global warming. This thesis explores the kinetic phase diagram of nitric acid/water aerosols with sizes ranging between 0. 2 and 1. 5 mm in radius and concentrations ranging between pure water and 0. 45 mole fraction HNO3. Although the kinetic phase diagram has now been studied between 0. 46 mole fraction HNO3 and pure water, more data is needed in the region between 0. 18 and 0. 25 mole fraction HNO3 to confirm the results reported. The project described in this thesis are a continuation of a project begun by Allan Bertram. The measurements involving aerosols with compositions greater than 0. 25 mole fraction HNO3 were carried out as part of Allan Bertram's Ph. D. thesis (see ref. 20) These data were later examined using a more comprehensive data analysis method (as presented in this thesis) in an effort to obtain a more complete understanding of this system.
159

Experimental pool boiling investigation of FC-72 on silicon with artificial cavities, integrated temperature micro-sensors and heater

Hutter, Christian January 2010 (has links)
Today nucleate boiling is widely used in numerous industrial applications such as cooling processes because of the high achieved heat transfer rates for low temperature differences. It remains a possible cooling solution for the next generation of central processing units (CPU), which dissipate heat fluxes exceeding the capabilities of today’s conventional forced air cooling. However, nucleate boiling is a very complex and elusive process involving many mechanisms which are not fully understood yet and a comprehensive model is still missing. For this study a new experimental setup was designed, constructed and commissioned to investigate bubble nucleation, growth, departure and interaction during nucleate pool boiling from a silicon device fully immersed in fluorinert FC-72. The location of bubble nucleation is controlled by artificial cavities etched into the silicon substrate. Boiling is initiated with a heater integrated on the back and micro-sensors indicate the wall temperature at the bubble nucleation site. During this work three different silicon test section designs were fabricated and boiling experiments on these substrates successfully conducted. Bubble growth, bubble departure frequencies and bubble departure diameters for different dimensioned artificial cavities, varied pressure and increasing wall temperature were measured from high-speed imaging sequences. Bubble interactions like vertical and horizontal coalescence were visualised and their impact on the boiling heat transfer investigated. The influence of spacing between two neighbouring artificial cavities on bubble nucleation and departure frequencies, vertical coalescence frequencies and departure diameters was analysed. The acquired data are used as input for a numerical code developed by our collaborators (Brunel University, UK and Los Alamos National Laboratories, USA) and are a first step to validate the code. The code studies the interactions between bubble nucleation sites on solid surfaces as a network. The simulations will help design boiling substrates utilised for chip cooling applications with optimal artificial cavity distribution to maximise the cooling heat transfer.
160

Simulation of Void Nucleation in Single-Phase Copper Polycrystals

Lieberman, Evan 01 August 2016 (has links)
A systematic investigation is presented into the microstructural and micromechanical influences on ductile damage nucleation with an emphasis on grain boundaries in polycrystals. Microstructures obtained from experiments on copper polycrystals are characterized using Electron Backscatter Diffraction (EBSD) and near-field High-Energy Diffraction Microscopy (nf-HEDM) and the occurrence of damage is compared with micromechanical values obtained using an elasto-viscoplastic model based on the Fast- Fourier Transform (EVPFFT). The model produces full-field solutions for the stress and strain in voxelized polycrystalline microstructures. In order to resolve the fields onto interfaces, local Cartesian moments of the polycrystalline grain structure are used to extract the normals of grain boundaries and the tangents of triple junctions directly from the voxelized microstructure. Thus projecting the stress yields a parameter with potential significance, i.e. the grain boundary surface tractions. We identify “traction hotspots”, i.e. regions with tractions that are significantly above the mean, for the case of uniaxial tension. These show correlations with the angle between the grain boundary normal and the loading axis, a trend that some experiments also show when boundaries that nucleated voids are analyzed using EBSD, though differences present between the simulation and experiment hint that further criteria are needed. Nf-HEDM was used to record microstructure images of a polycrystalline sample before and after it undergoes damage. The damage locations in the post-shocked image are mapped onto the pre-shocked image, allowing stress and strain values from the EVPFFT model in the regions that eventually nucleated damage to be correlated with the locations of the void. The unexpected result was that differences in plastic work across boundaries correlated with voids, whereas vi quantities such as triaxiality and normal forces across boundaries did not.

Page generated in 0.0154 seconds