161 |
Star formation in unobscured quasarsPitchford, Lura Katherine 30 August 2021 (has links)
It is now well established that a substantial fraction of all galaxy assembly occurs in intense bursts of star formation and black hole accretion, but the role of these two modes and how much they affect one another remains unclear. We thus investigate this in three complementary studies. In the first, we assemble a sample of 513 quasars identified by the Sloan Digital Sky Survey with detections by Herschel. These objects span a redshift range of 0 < z < 4, and their SEDs give a mean SFR of ~1000M☉/year. When comparing these SFRs to the intrinsic properties of the quasars, we find no clear connections between the quasars and the ongoing star formation events in their hosts. We then look for evidence of AGN feedback in broad absorption line (BAL) quasars, as such features are indicative of outflowing material. We find that high-ionization BAL quasars have indistinguishable properties to those of classical quasars. In our second study, which describes an iron low-ionization BAL quasar, SDSS J121441.42-000137.8, our results are again consistent with no feedback. Thus, it seems unlikely that feedback plays a dominant role in quenching star formation at the extreme SFRs seen in our BAL objects. We lastly study the host of an optically-bright quasar, SDSS J160705.16+355358.6, with evidence of an ongoing merger. We create the Point Spread Function (PSF) using a star that is in the same part of the field as our object, a method which is relatively unexplored. By subtracting the PSF, we are able to extract some of the host properties. We compare two PSF creation methods and find the empirical approach to be superior. Fits to the SEDs of the two galaxies are consistent with both falling on or above the main sequence of star formation. It is additionally plausible that these two galaxies could coalesce into a single massive quiescent galaxy by z ~ 2, and thus serve as progenitors to this class of galaxy that has proven challenging to our understanding of galaxy assembly. / Doctor of Philosophy / Quasars are among some of the brightest objects in the Universe and are powered by supermassive black holes that are rapidly accreting new material. The light from these distant objects can be detected across the electromagnetic spectrum, with each wavelength regime offering new insight into their properties. Further, if we look at their spectra, the features appear redshifted, i.e. they are at longer wavelengths compared to the expected values on Earth. More distant objects have higher redshifts. This, coupled with the constant speed of light, tells us that light from a quasar that has reached us on Earth must have been emitted many years ago; in other words, quasars offer glimpses into the past and can be used study how our Universe has assembled over time.
Star formation and quasar activity in galaxies have been shown to coexist across all redshifts. This suggests a deep connection between a galaxy's stellar and black hole mass assemblies. Both peak at z ~ 2, implying that a substantial amount of all galaxy assembly took place in high-redshift, dusty bursts of star formation and quasar activity. This dust absorbs light originally emitted at optical/UV wavelengths and reradiates it in the infrared, making infrared wavelengths the perfect regime in which to investigate the connection between the two processes.
In this dissertation, I have focused specifically on quasars with detections at both optical and far-infrared (FIR) wavelengths to determine what effect, if any, quasars have on the galaxies in which they reside. The optical emission of these systems describes the properties of the quasars, while the FIR estimates star formation rates (SFRs) in their hosts. Many astronomers invoke something called feedback, in which the quasar regulates the host star formation, to align theory with observations. We search for evidence of this process in the very bright quasars located within extremely star-forming systems. We, however, find no such evidence. This could imply that, at the high luminosities of our systems, feedback is not the dominant effect in regulating star formation, but perhaps some host self-regulation is instead. It could also imply that the feedback timescale is much shorter than that of either quasar or extreme star formation activity, making direct observations of feedback difficult.
|
162 |
Characterizing cell-type and neuron subtype activity and abundance in asymptomatic Alzheimer diseaseO'Neill, Nicholas Kerry 17 December 2024 (has links)
2025 / Alzheimer’s disease (AD) is a progressive and complex neurodegenerative disorder characterized by increasing amyloid-β (Aβ) plaque burden, followed by increasing neurofibrillary tau tangles (NFT) and cognitive decline. However, many individuals fall outside of this typical progression, either exhibiting NFTs without Aβ or maintaining cognitive performance despite the presence of AD pathology, i.e., cognitive resilience. AD progression is also associated with changes in cell-type abundance and cell-type-specific activity. This dissertation investigates these topics by integrating AD brain single-nuclei RNA-seq (snRNA-seq) with large-scale bulk RNA-seq datasets and whole genome sequencing datasets generated from the same individuals. We developed an algorithm for bulk cell-type deconvolution using a snRNA-seq reference dataset by adjusting for technical differences specific to snRNA-seq. We then applied this algorithm to examine the relationship between cell-type abundance and AD endophenotypes, including cognitive resilience, in brain regions that are vulnerable or resistant to the disease. In addition, we identified and discussed genetic drivers of changes in cell-type abundance. Finally, we generated highly cell-type-specific AD polygenic risk scores (ct-ADPRS) to investigate the relationship between cell-type activity and AD progression. / 2025-12-17T00:00:00Z
|
163 |
Anterior and lateral thalamic lesions in object-odour paired associate learningBell, Rati January 2007 (has links)
Diencephalic amnesia is thought to be the result of damage to a single thalamic structure that is responsible for the memory impairment. However, an alternative view is that different thalamic structures contribute to the memory impairment in subtly different ways. Paired-associate learning is one important measure of learning and memory that is highly sensitive to disruption in people with amnesia or dementia. The current study will investigate the influence of lesions to two thalamic subregions, the anterior thalamic nuclei (AT) and the lateral thalamic nuclei (LT) in an object-odour paired associate learning task. Each of these subregions has been suggested by the literature as critical for amnesia after thalamus injury. The current study does not involve a place/ space component. Both AT and LT lesions caused impairments in the object-odour paired associate task, but not in the simple discrimination tasks. The results of this study provide new evidence to suggest that the anterior thalamic region may be responsible for more than spatial memory processing. This result is inconsistent with those of Aggleton & Brown (1999) that consider the AT to be part of an 'extended hippocampal system'. The deficits observed from LT lesions in this study provide new insight into the lateral thalamic region's role in pattern processing.
|
164 |
Predicting Electromagnetic Signatures of Gravitational Wave SourcesD'Orazio, Daniel John January 2016 (has links)
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to to gamma-rays.
|
165 |
Time but no space : resolving the structure and dynamics of active galactic nuclei using time domain astronomyStarkey, David Andrew January 2017 (has links)
This thesis presents a study of the sub-light year regions of Active Galactic Nuclei (AGN). These environments contain accretion discs that orbit a central super-massive black hole. The luminosity of the AGN inner regions varies over time across all wavelengths with variability at longer wavelengths lagging behind that at shorter wavelengths. Since the AGN themselves are too remote and too compact to resolve directly, I exploit these time lags to infer the physical characteristics of the accretion disc and surrounding gas clouds that emit broad emission lines. These characteristics include the inclination and temperature profile of the accretion disc, and the shape (or light curve) of the luminosity fluctuations that drive the accretion disc variability. This thesis details the work in the first author papers of Starkey et al. (2016, 2017), in which I detail the statistical code, CREAM (Continuum REverberting AGN Markov Chain Monte Carlo), that I developed to analyse AGN accretion disc variability. I apply the code to a set of AGN light curve observations of the Seyfert 1 galaxy NGC 5548 by the AGN STORM collaboration (De Rosa et al., 2015; Edelson et al., 2015; Fausnaugh et al., 2016a; Goad et al., 2016; Starkey et al., 2017). I also present work detailing my variability analysis of the Seyfert galaxies NGC 6814, NGC 2617, MCG 08-11-11 and NGC 4151. This work has contributed to the analysis presented in (Troyer et al. 2016, Fausnaugh et al. submitted). I also investigate the implications of a twin accretion disc structure (Nealon et al., 2015) on the disc time lag measurements across near UV and optical wavelengths. I finish by detailing a modification to CREAM that allows it to merge continuum light curves observed in a common filter, but taken by multiple telescopes with different calibration and instrumental effects to consider.
|
166 |
Anterior and lateral thalamic lesions in object-odour paired associate learningBell, Rati January 2007 (has links)
Diencephalic amnesia is thought to be the result of damage to a single thalamic structure that is responsible for the memory impairment. However, an alternative view is that different thalamic structures contribute to the memory impairment in subtly different ways. Paired-associate learning is one important measure of learning and memory that is highly sensitive to disruption in people with amnesia or dementia. The current study will investigate the influence of lesions to two thalamic subregions, the anterior thalamic nuclei (AT) and the lateral thalamic nuclei (LT) in an object-odour paired associate learning task. Each of these subregions has been suggested by the literature as critical for amnesia after thalamus injury. The current study does not involve a place/ space component. Both AT and LT lesions caused impairments in the object-odour paired associate task, but not in the simple discrimination tasks. The results of this study provide new evidence to suggest that the anterior thalamic region may be responsible for more than spatial memory processing. This result is inconsistent with those of Aggleton & Brown (1999) that consider the AT to be part of an 'extended hippocampal system'. The deficits observed from LT lesions in this study provide new insight into the lateral thalamic region's role in pattern processing.
|
167 |
Linking the power sources of emission-line galaxy nuclei from the highest to the lowest redshifts /Constantin, Anca. January 2004 (has links)
Thesis (Ph. D.)--Ohio University, August, 2004. / Includes bibliographical references (p. 173-185).
|
168 |
Linking the power sources of emission-line galaxy nuclei from the highest to the lowest redshiftsConstantin, Anca. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, August, 2004. / Title from PDF t.p. Includes bibliographical references (p. 173-185)
|
169 |
Breakup of three-body exotic nuclei / Dissociation de noyaux exotiques à trois corpsPinilla Beltran, Edna Carolina 18 December 2012 (has links)
Le but principal de ma thèse de doctorat est d’étudier la dissociation de noyaux exotiques. Ces noyaux sont peu liés et présentent une structure en halo dominante. Ceci conduit à des propriétés très particulières, telles que des rayons beaucoup plus grands que ceux des noyaux voisins. Les noyaux 6He et 11Li sont des exemples typiques, et sont décrits par des structures alpha+n+n et 9Li+n+n, respectivement. La principale technique expérimentale pour étudier ces noyaux consiste à développer des faisceaux d’ions radioactifs, et à mesurer la section efficace de dissociation sur des cibles lourdes. Les données expérimentales nécessitent donc le développement de modèles théoriques précis pour leur interprétation.<p><p>Mon travail a consisté en le développement de la méthode eikonale pour décrire les processus de diffusion élastique et de dissociation. Cette méthode nécessite les fonctions d’onde du projectile qui, dans le cas présent, est décrit par une structure à trois corps. Cette situation rend les calculs particulièrement difficiles, en particulier pour la réaction de dissociation où les fonctions d’onde du continu à trois corps sont nécessaires. Les fonctions d’onde à trois corps sont décrites dans le cadre des coordonnées hypersphériques, à la fois pour les états liés et pour les états de diffusion.<p><p>J'ai d'abord calculé les sections efficaces de dissociation de 6He en utilisant des fonctions d'onde & / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
170 |
Étude de la structure de noyaux de mendélévium / Study of the structure of mendelevium nucleiBriselet, Raphaël 04 October 2016 (has links)
Le sujet de cette thèse concerne la région des transfermiums. Il s'agit des noyaux de numéro atomique supérieur à 100 qui sont intéressants pour de nombreuses raisons. Tout d'abord, cette région est encore peu connue. En effet, les noyaux deviennent de plus en plus difficiles à produire lorsque qu'ils deviennent riches en nucléons. A fur et à mesure que l’étude progresse vers les noyaux les plus lourds, il devient difficile de les produire à plus de quelques unités, voire simplement de trouver des réactions permettant de les synthétiser. C'est pourquoi ces noyaux sont, aujourd'hui, cantonnés à des recherches très minutieuses. En outre, les modèles nucléaires prédisent l’existence d’un îlot de stabilité, encore inaccessible expérimentalement, pour les noyaux super-lourds vers Z~114–126, N~184. A contrario, les études dans la région des transfermiums nous apportent des informations sur cet îlot de stabilité. Cette thèse traite principalement de la structure nucléaire de deux isotopes impairs en proton de mendélévium (Z=101) : le ²⁴⁹Md et le ²⁵¹Md. Ces deux isotopes sont déformés, ce qui nous permet d’avoir accès à des états quantiques communs avec des noyaux sphériques beaucoup plus lourds pouvant appartenir à l’îlot de stabilité. Les noyaux ont été créés à l'université de Jyväskylä en Finlande par réaction de fusion-évaporation à l'aide d'un faisceau de ⁴⁸Ca et de cibles de ²⁰³⁻²⁰⁵Tl. Les noyaux sont extraits de l’important bruit de fond des réactions parasites à l'aide du séparateur à gaz RITU grâce à la technique de corrélations génétiques. Afin d'extraire la structure nucléaire de ces noyaux, les expériences exploitent les techniques de spectroscopie gamma et électron : détecteurs Jurogam II et SAGE. Grâce à ces instruments, une partie de la structure des noyaux peut être connue. Nous nous focalisons sur des structures collectives comme les bandes rotationnelles, mais aussi d'états métastables (les isomères), ou encore les transitions à une particule. Ce travail a permis d’extraire deux bandes rotationnelles du ²⁵¹Md. Nous avons pu pour la première fois réaliser la spectroscopie électron de ce noyau ce qui nous a permis de contraindre l’assignement des orbitales nucléaires : il s’agit des têtes de bande 1/2⁻ et 7/2⁻. Nous avons également découvert un isomère du ²⁵¹Md et pu observer des transitions l’alimentant et le désexcitant. Ce travail a également permis d’ébaucher une structure collective de ²⁴⁹Md ainsi que de mesurer des propriétés de l’état fondamental. Finalement une estimation de la section efficace de production de ²⁴³Es (⁴⁸Ca + ¹⁹⁷Au) a aussi été faite afin d’évaluer la possibilité d'une future expérience. L’ensemble des données spectroscopiques est confronté à de nouveaux calculs de champs moyen de type Hartree-Fock-Bogoliubov utilisant les forces de Skyrme et Gogny. Cette thèse prolonge les recherches sur la région des noyaux lourds et vient compléter les données spectroscopiques de cette région encore largement inconnue. / The subject of this thesis is the study of the transfermium nuclei region. These are nuclei having an atomic number larger than 100, which are interesting for several reasons. First of all, this region is still poorly known. Indeed, nuclei are more and more difficult to produce as soon as the number of nucleons they are made of increases. When studies move towards the heaviest elements, it becomes difficult to produce more than a few atoms, the reactions production sometimes being simply impossible. That is why these nuclei as still restricted to very thorough studies. Furthermore, nuclear models predict an island of stability for super-heavy elements with Z~114–126, N~184, which are however experimentally still out of reach. Conversely, studies in the transfermium region can provide information of this island of stability. The thesis is mainly related to the nuclear structure of two proton-odd mendelevium (Z=101) isotopes: ²⁴⁹Md and ²⁵¹Md. These isotopes are deformed, which provides access to quantum states also involved in heaviest spherical nuclei from the predicted island of stability. Nuclei were produced at the University of Jyväskylä with fusion-evaporation reactions using a ⁴⁸Ca beam on ²⁰³⁻²⁰⁵Tl targets. Mendelevium nuclei were selected from the large background of parasitic reactions using the RITU gas-filled separator and the genetic correlations technique. The nuclear structure is deduced from the gamma and electron spectroscopy. The SAGE and Jurogam II arrays have been used. These devices provide new insight into nuclei structure: we focussed on the collective structure revealed through rotational bands, on metastable states (isomers) or on single-particle transitions. In this work, two ²⁵¹Md rotational band could be highlighted. We have been able to perform for the first time the electron spectroscopy of this nucleus, which provides a constrain for the nuclear orbitals assignment. The 1/2⁻ and 7/2⁻ band-heads were assigned. We furthermore observed for the first time a ²⁵¹Md isomer with several feeding and de-exciting transitions. In this work, we could also sketch the collective structure of ²⁴⁹Md and measure some of its ground-state properties. Finally, the cross section for the ²⁴³Es production (⁴⁸Ca + ¹⁹⁷Au) was measured in order to estimate the feasibility of a future spectroscopy. Spectroscopic data are compared to new mean-field calculations. Hartee-Fock Bogoliubov calculations using the Skyrme and Gogny forces were made. This thesis is part of the ongoing research program on heavy nuclei; it provides new spectroscopic data in a region where much remains to be discovered.
|
Page generated in 0.021 seconds