• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 35
  • 16
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of HMGB1 on Nucleosome Structure and Estrogen Receptor Binding Affinity to Concensus Estrogen Response Element on Nucleosomal DNA

Sarpong, Yaw Acheampong 12 November 2010 (has links)
No description available.
2

The structure of the chromatin axis during transcription

Ericsson, Christer. January 1988 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1988. / Extra t.p. with thesis statement inserted. Includes bibliographical references.
3

The structure of the chromatin axis during transcription

Ericsson, Christer. January 1988 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1988. / Extra t.p. with thesis statement inserted. Includes bibliographical references.
4

THE BINDING OF ESTROGEN, PROGESTERONE AND GLUCOCORTICOID RECEPTORS TO THEIR RECOGNITION SITES IN A NUCLEOSOME AND THE EFFECT OF HMGB1 ON THE BINDING AFFINITY

SARPONG, YAW A. 03 August 2006 (has links)
No description available.
5

Chemically Modified Histone H3 to Study Acetylation at the Nucleosome Dyad

Manohar, Mridula 26 August 2009 (has links)
No description available.
6

Nucleosome Regulation of Transcription Factor Binding Kinetics: Implications for Gene Expression

Donovan, Benjamin Thomas January 2019 (has links)
No description available.
7

nucleosome, transcription and transcription regulation in Archaea

Xie, Yunwei 18 October 2005 (has links)
No description available.
8

Analysis of Nucleosome Isolation and Recovery: From <em>In Silico</em> Invitrosomes to <em>In Vivo</em> Nucleosomes

Skousen, Collin Brendan 01 December 2016 (has links)
There are a vast number of factors that influence nucleosome formation, and consequently gene regulation. These factors include histone modifications, nucleotide composition, transcriptional region elements, and specific nucleotide motifs, among others. Although the amount we know now is limited, we are creating new techniques and discoveries to assist us in continued understanding of chromatin. To make a significant contribution to the field of chromatin, I conducted two hypothesis driven sets of experiments that address the topic of chromatin structure. First, I created a technique for tissue specific nucleosome isolation with the goal of observing the effect of single nucleotide polymorphisms (SNPs) on nucleosome formation. Second, I created and tested a method to recover lost in vitro nucleosome reconstitution data, which can improve this type of data, commonly used for observing nucleosome positioning. The first experiment needs a more specific antibody to complete the last step and function as designed. The second experiment shows that our nucleosome recovery method, when applied conservatively, can recover 90% of the lost nucleosome data.
9

Structural and biochemical insights into the ATP-dependent chromatin remodeler LSH

Varzandeh, Simon January 2017 (has links)
Chromatin remodelling proteins support a variety of cellular functions and utilise the energy from ATP hydrolysis to either reposition or evict nucleosomes. One such protein, Lymphoid specific helicase (LSH), regulates DNA methylation in mammalian cells cooperatively with DNA Methyltransferase 3B (DNMT3B) through binding of the N-terminal domain of LSH. The correct functioning of LSH is essential for heterochromatin formation, with a knockout of LSH causing perinatal lethality or severe developmental abnormalities. There is little biochemical data and no structural data on LSH. Therefore, we aim to determine the structural characteristics and regulatory mechanism of LSH in vitro. LSH was expressed in an optimised insect cell system which increased protein yield 25-fold with greater than 95% purity. LSH is monomeric with increased thermal stability upon ATP or ADP binding. Full length LSH could not be crystallised therefore a core ATPase region of LSH missing the N-terminal domain was identified through limited proteolysis. This also provided evidence the N-terminal domain of LSH is disordered, which was proven through biophysical characterisation of LSH1-176. Expression of the LSH ATPase region was weak and the protein was unstable; suggesting the N-terminal domain of LSH is required for LSH stability. Therefore, complementary structural methods were used to study LSH. Crosslinking mass-spectrometry revealed the N and C termini are in close proximity, suggesting flexible linking regions, which was supported by limited proteolysis experiments. Negative staining Electron Microscopy defined LSH as a tri-lobal and elongated structure which could harbour the ATPase region in the two spherical lobes. 3D modelling of SAXS data obtained of LSH was in agreement with EM data. To understand molecular mechanisms of LSH, functional studies investigating LSH:DNA and LSH:DNMT3B interactions were performed. LSH had a KD for dsDNA of 0.4 μM in solution. LSH does not bind ssDNA nor does it have a greater affinity for methylated dsDNA. LSH was found to bind the dsDNA overhangs of nucleosomes but not to core nucleosomes, suggesting LSH solely interacts with DNA in chromatin and not histones. A stable complex of LSH:DNMT3B could not be achieved in vitro, however, other components for complex formation may have been missing. This study has improved our understanding of LSH structure, biophysical properties and its biochemical interaction with DNA and nucleosomes. This study has laid the foundations for the structural investigations of a LSH:nucleosome and potentially a LSH:DNMT3B complex in vitro to gain a greater understanding of how functional domains of LSH regulates its enzymatic function.
10

Mechanisms and Dynamics of Oxidative DNA Damage Repair in Nucleosomes

Cannan, Wendy J. 01 January 2016 (has links)
DNA provides the blueprint for cell function and growth, as well as ensuring continuity from one cell generation to the next. In order to compact, protect, and regulate this vital information, DNA is packaged by histone proteins into nucleosomes, which are the fundamental subunits of chromatin. Reactive oxygen species, generated by both endogenous and exogenous agents, can react with DNA, altering base chemistry and generating DNA strand breaks. Left unrepaired, these oxidation products can result in mutations and/or cell death. The Base Excision Repair (BER) pathway exists to deal with damaged bases and single-stranded DNA breaks. However, the packaging of DNA into chromatin provides roadblocks to repair. Damaged DNA bases may be buried within nucleosomes, where they are inaccessible to repair enzymes and other DNA binding proteins. Previous in vitro studies by our lab have demonstrated that BER enzymes can function within this challenging environment, albeit in a reduced capacity. Exposure to ionizing radiation often results in multiple, clustered oxidative lesions. Near-simultaneous BER of two lesions located on opposing strands within a single helical turn of DNA of one another creates multiple DNA single-strand break intermediates. This, in turn, may create a potentially lethal double-strand break (DSB) that can no longer be repaired by BER. To determine if chromatin offers protection from this phenomenon, we incubated DNA glycosylases with nucleosomes containing clustered damages in an attempt to generate DSBs. We discovered that nucleosomes offer substantial protection from inadvertent DSB formation. Steric hindrance by the histone core in the nucleosome was a major factor in restricting DSB formation. As well, lesions positioned very close to one another were refractory to processing, with one lesion blocking or disrupting access to the second site. The nucleosome itself appears to remain intact during DSB formation, and in some cases, no DNA is released from the histones. Taken together, these results suggest that in vivo, DSBs generated by BER occur primarily in regions of the genome associated with elevated rates of nucleosome turnover or remodeling, and in the short linker DNA segments that lie between adjacent nucleosomes. DNA ligase IIIα (LigIIIα) catalyzes the final step in BER. In order to facilitate repair, DNA ligase must completely encircle the DNA helix. Thus, DNA ligase must at least transiently disrupt histone-DNA contacts. To determine how LigIIIα functions in nucleosomes, given this restraint, we incubated the enzyme with nick-containing nucleosomes. We found that a nick located further within the nucleosome was ligated at a lower rate than one located closer to the edge. This indicated that LigIIIα must wait for DNA to spontaneously, transiently unwrap from the histone octamer to expose the nick for recognition. Remarkably, the disruption that must occur for ligation is both limited and transient: the nucleosome remains resistant to enzymatic digest before and during ligation, and reforms completely once LigIIIα dissociates.

Page generated in 0.0268 seconds