• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 24
  • 19
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 151
  • 64
  • 52
  • 41
  • 38
  • 31
  • 29
  • 26
  • 24
  • 22
  • 17
  • 15
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

An optical fiber sensor for the determination of hydrogen peroxide

Hu, Xueei 03 May 2008 (has links)
Hydrogen peroxide is used in various fields, such as food preservative, bleaching, oxidizing, reducing, and chemical reaction reagents. However, inappropriate use may have harmful effects to human health or environment. A number of analytical methods have been developed for the determination of hydrogen peroxide. Herein is described the effort to develop an optical fiber chemical sensor based on the evanescence wave absorbance that can detect the presence of, and measure the concentration of, hydrogen peroxide. For the H2O2 optical fiber sensor, Nafion membrane was coated in the fiber optic. Titanium ions dispersed in a Nafion membrane can form a TiO-H2O2 complex with the H2O2 diffused into the membrane. The complex is shown to absorb light with a maximum absorption near 360 nm. The intensity of the absorbance peak is directly proportional to the concentration of H2O2. At present, this sensor has been tested for detecting H2O2 concentrations ranging from 0.03 ppm to 9 ppm in an aqueous solution at room temperature. Additionally, coating polydimethylsiloxiane (PDMS) outside the fiber optic can detect H2O2 in high concentration 300ppm and high temperature 70oC. Finally, the use of the developed optical fiber chemical sensor allows the direct determination of H2O2 in milk.
52

Direct Methanol Fuel Cell Membranes from Polymer Blends

Lee, Jeong Kyu January 2006 (has links)
No description available.
53

Nanofiber Network Composite Membranes for Proton Exchange Membrane Fuel Cells

Choi, Jonghyun 19 October 2010 (has links)
No description available.
54

Optical Sensing of Organic Contaminants through their Immobilization and Reaction Inside Perfluorosulfonic Acid Polymer Membranes

Muthukumarasamy Ayyadurai, Subasri 18 September 2014 (has links)
No description available.
55

Investigating the factors for the low cycle life of sodium oxygen batteries

Bi, Xuanxuan 15 May 2015 (has links)
No description available.
56

The Impact of Humidity on an Optical Chemical Sensing Device for Non-invasive Exhaled Gas Monitoring

Qian, Zexin 20 October 2016 (has links)
No description available.
57

Investigation of the Effect of Catalyst Layer Composition on the Performance of PEM Fuel Cells

Russell, Jason Bradley 03 September 2003 (has links)
The catalyst layer of a proton exchange membrane (PEM) fuel cell is a porous mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play a critical role in determining the performance of the PEM fuel cell. In this research, sample membrane electrode assemblies (MEAs) are prepared using various combinations of polymer and carbon loadings while the platinum catalyst surface area is held constant. For each MEA, polarization curves are determined at common operating conditions. The polarization curves are compared to assess the effects of the catalyst layer composition. The results show that both Nafion and carbon content significantly affect MEA performance. The physical characteristics of the catalyst layer including porosity, thickness, active platinum surface area, ohmic resistance, and apparent Nafion film thickness are investigated to explain the variation in performance. The results show that for the range of compositions considered in this work, the most important factors are the platinum surface area and the apparent Nafion film thickness. / Master of Science
58

Investigation of Shorting by Penetration in Pem Fuel Cell Membranes

Fox, Christopher James 02 June 2009 (has links)
Electrical shorting through the proton exchange membrane (PEM) is a form of early failure commonly found in PEM fuel cells. In order to improve the durability and thus the commercial potential for PEM fuel cells, this form of failure must be understood and mitigated. This research investigates whether complete penetration is the most likely cause of shorting and establishes general parameters (force, contact pressure, temperature, and time) that lead to shorting in a typical PEM material, Nafion® NRE211. Data was obtained from a novel indentation apparatus that was coupled with an electrical circuit to assess the force and depth of penetration at which shorting occurs in a PEM at temperatures ranging from 70ï °C to 100ï °C. The results show that shorting occurs when full penetration is reached, based on both displacement at shorting, and resistance of the electrical circuit at shorting. In addition, a finite element model was created in a commercial finite element tool (Abaqus) in an attempt to predict time to penetration under loads and geometric configurations typically found in PEM fuel cells. The finite element model was investigated for use with standard Abaqus material modules (e.g. two-layer viscoplastic and hyperelastic-viscoelastic) describing Nafion® behavior. The results suggest that the standard material models do not sufficiently describe Nafion® behavior in this particular application and suggest the need for alternative material models that capture both the viscous and plastic nature of Nafion®. / Master of Science
59

Estudos conformacionais da proteína Albumina de Soro Bovino (BSA) e sua interação com o polímero NAFION® em diferentes condições físico-químicas por espectroscopias de dicroísmo circular e fluorescência / Bovine Serum Albumin (BSA) conformational studies and interaction with the NAFION® polymer under different physicochemical conditions by circular dichroism and fluorescence spectroscopy

Resende, Luiz Filipe Tsarbopoulos de 12 April 2019 (has links)
Estudos anteriores mostram que o polímero Nafion® pode causar deslocamento do equilíbrio conformacional de proteínas em valores de pH que não o fisiológico. Nesse sentido, o Nafion® não só pode ser utilizado como uma sonda interessante para estudos estruturais de proteínas, mas, também, é importante entender seu papel na conformação da proteína. Portanto, a Albunina do Soro Bovino (BSA) foi escolhida como modelo para o estudo dos efeitos do Nafion® na conformação helicoidal de proteínas. A finalidade deste trabalho é entender as alterações na conformação e vizinhanças aromáticas da BSA, na faixa de pH de 2 a 12, na presença e ausência de Nafion®, que pode também revelar o papel do polímero na exposição dos aromáticos e nos processos de transferência de energia. As alterações da estrutura secundária foram medidas por Dicroísmo Circular e os espectros de fluorescência no estado estacionário foram usados para analisar as mudanças nas vizinhanças dos aromáticos. Os resultados mostraram a diminuição discreta do conteúdo helicoidal da conformação da BSA na região extremamente básica, pH 11 em relação à conformação em pH 7. Já na região ácida, pH 2, embora haja considerável diminuição do conteúdo helicoidal, a BSA ainda mantém quase 50% de sua conformação secundária regular. Em relação aos ambientes dos aromáticos triptofano e tirosina, a eficiência quântica da emissão de fluorescência diminui em regiões ácidas e básicas, indicando que, nessas estruturas, os aromáticos encontram-se em restrição conformacional em relação ao observado na proteína nativa. Estes resultados apontam para a mudanças na conformação da BSA em ambas as regiões: ácidas e básicas, incluindo mudanças das estruturas secundárias e nas vizinhanças dos aromáticos. A adição do Nafion®, por outro lado, acentua o deslocamento para o azul e diminuição da exposição dos aminoácidos, tanto em solução quanto em estado sólido. A estrutura secundária da proteína é completamente modificada pelo polímero na região ácida, e esta conformação é mantida nas regiões neutra e básica, sugerindo que o Nafion® não estabiliza estruturas helicoidais / Previous studies have shown that Nafion® can disturb the conformational equilibrium of some proteins when at pH other than physiological ones. In this sense, Nafion® can used to study protein conformation, but is also important to understand its interaction with the proteins. In this work, Bovine Serum Albimun (BSA) was chosen as a model to understand the modifications caused by Nafion® at helicoidal proteins conformation. More specifically, the aim encloses the understanding of changes in BSA secondary conformation and aromatic vicinities, at pH range from 2 to 12, in the Nafion®s presence and absence. Secondary changes were measured by Circular Dichroism and steady-state fluorescence was used to study the aromatic vicinities. Results have shown small differences at helix content in the extremely basic pH (pH 11) when compared to BSA conformation at pH 7 (native one). At pH 2, on the other hand, although a decreasing in helical content was observed, BSA was able to keep almost 50% of secondary regular conformation. Regarding the aromatic vicinities (tryptophans and tyrosines) the fluorescence emission quantum eficience decreased in both regions (acid and basic), suggesting that the aromatics in these conformations are found in a more restrict environment. Nafion®, when added, promoted a decreasing in aromatic exposition, both in solution and solid state, while the secondary structure is completelu modified by its presence in all pH range, suggesting that helical conformations are not stabilized by Nafion®
60

Approche multi-échelle des mécanismes de vieillissement des coeurs de pile à combustible / Multi-scale approach of membrane ageing mecanisms in PEM fuel cell

De Moor, Gilles 05 November 2015 (has links)
Malgré d'importants progrès ces dix dernières années, les piles à combustible de type PEMFC (à membrane échangeuse de protons) souffrent toujours de fin de vie prématurée. Le catalyseur et la membrane, principaux constituants du cœur de la pile, sont les deux éléments principalement mis en cause. Ce travail a pour objectif de comprendre les modes de rupture et de dégradation de la membrane électrolyte durant le fonctionnement. Différents types de vieillissement ont été analysés, à la fois en laboratoire mais également sur des systèmes ayant fonctionné sur site en conditions réelles d'opération (jusqu'à 13000 heures). Au travers une approche multi-échelle (du système macroscopique à l'analyse des propriétés macromoléculaires de la membrane) et d'une utilisation systématique (plusieurs centaines d'échantillons analysés), des scénarios de dégradation ont été établis. Dans un premier temps, des outils de caractérisation macroscopiques ont été spécifiquement développés pour sonder rapidement l'ensemble des cellules d'un stack. Ces outils permettent d'identifier les défauts inter et intra-cellule tout en discriminant les propriétés barrières aux gaz des propriétés d'isolation électronique des membranes, tous deux responsables des courants de fuite en système. Cette approche systématique sur l'ensemble des échantillons a mis en évidence des zones spécifiques favorisant la dégradation prématurée des membranes. Dans un second temps, des caractérisations physico-chimiques ciblées dans ces zones de défaillance ont révélé une dégradation fortement localisée et principalement favorisée par des conditions opératoires spécifiques dans les zones d'entrée des gaz. / In spite of strong improvements in fuel cell design this last ten years, Proton Exchange Membrane Fuel Cell are still suffering of premature end of life. Failure of the heart of fuel cell, composed of membrane and catalysts, is commonly responsible for fuel cell shutdown. This work brings an original contribution in understanding membrane degradation mechanisms. Different ageing tests were analyzed, in laboratory as well as in real life operating conditions (up to 13000 hours of solicitations). Within a multi-scale approach, from macroscopic to microscopic, and with a systematic usage (hundreds of samples fully characterized), some degradation mechanisms were established. Firstly, macroscopic tools were specifically developed to rapidly track state of health of all the cells from each stack. With the help of these tools, we were able to identify defects inter and intra-cell. It was also possible to discriminate between gas crossover or electronic short-circuit defects, both responsible for current leaks. This systematic approach on each samples put forward some specific areas within the membrane where degradation was promoted. Secondly, physico-chemical characterizations were performed on membrane targeted areas. It was shown that membrane degradation is strongly localized in some specific channels of the bipolar plates and favored by specific operating conditions in the gaz inlets areas.

Page generated in 0.0305 seconds