Spelling suggestions: "subject:"nanobiotechnology"" "subject:"andbiotechnology""
11 |
Transcutaneous delivery of T cell-inducing viral vector malaria vaccines by microneedle patchesPearson, Frances E. January 2011 (has links)
There is an urgent need for improvements to existing vaccine delivery technologies to run parallel with the development of new-generation vaccines. The burdens of needle-based immunisation strategies are exacerbated by poor resource provision in such areas as sub-Saharan Africa, where annual malaria mortality stands at 860,000. Needle-free delivery of vaccine to the skin holds promise for improved immunogenicity with lower doses of vaccine, in addition to significant logistical advantages. Various methods have been described for the transcutaneous delivery of vaccines, including the use of microneedles to overcome the outer stratum corneum of the skin for efficient delivery of liquid or solid, microneedle-coated vaccines into underlying strata rich in antigen-presenting cells. This thesis aims to evaluate two transcutaneous silicon microneedle and microprojection patch technologies for the delivery of live recombinant Adenovirus and Modified Vaccinia Ankara-vectored vaccines encoding pre-erythrocytic malaria antigens in mice. Cellular immunogenicity directed against a well-documented epitope of the Plasmodium berghei circumsporozoite protein is evaluated, as is protection against lethal P. berghei sporozoite challenge. Immunological and logistical benefits of each technology are assessed, as well as mechanisms underlying differences in the generation of a patch-induced immune response to vaccination. These data inform the future development of transcutaneous microneedle patches for the delivery of live vaccine.
|
12 |
Ultrasound-triggered drug release from liposomes using nanoscale cavitation nucleiGraham, Susan M. January 2014 (has links)
Side effects of current chemotherapeutics limit their use in cancer therapy. Although many current drugs are highly toxic and potent, the effects they have on non-cancerous tissue are unbearable for patients. Targeting these drugs may provide a means to restrict their toxic effects to only cancer tissue while leaving healthy tissue unaffected. This approach requires that the drug is only available in cancer tissue, which has been achieved here by encapsulating drugs into liposomal nano-capsules which are capable of passively accumulating in cancerous tissue via the enhanced permeability and retention effect (EPR). In addition to localisation, a threshold dose must be achieved to deliver the desired toxic effect to the target tumour tissue. Previous strategies have relied on passive 'leaching' of the drug from liposomes, however this 'leaching' does not necessarily achieve the threshold dose required. In the present work, a new generation of liposomes has been developed whereby release is solely achieved in the presence of ultrasound triggered cavitation. Instigation of such cavitation events would normally require the target tissue be exposed to high and possibly damaging ultrasound pressures. To remove the need for these high pressures, cavitation nuclei have been developed to lower the cavitation threshold of surrounding media. To allow for improved co-localisation and treatment deeper into cancer tissue, cavitation nuclei were developed to be in the nanoscale size range. Two types of novel cavitation nuclei were produced, a rough surfaced carbon nanoparticle (CNP, ~180 nm) and smooth shaped polymeric nano-cup particle (NC, ~150, 470, or 770 nm). Both types of particle are solid nanoparticles with gas entrapped on their surface which was capable of cavitating in response to ultrasound without greatly affecting the particle itself. These particles are classified as cavicatalytic nanoparticles due to their ability to reduce the cavitation threshold of their surrounding media without being destroyed themselves. Finally, an entirely nanoscale release system was developed and tested in vitro and in vivo. The drug carrier (the liposome) and effector agent (the cavicatalytic nanoparticle) were used to demonstrate ultrasound triggered drug release, specifically in response to the generation of cavitation events. These cavitation events could be non-invasively monitored and characterised, adding to the potential clinical utility of the technologies developed and described here.
|
13 |
Development of spontaneous isopeptide bond formation for ligation of peptide tagsFierer, J. O. January 2014 (has links)
Peptide tags are ubiquitous in the life sciences, with roles including purification and selective labeling of proteins. Because peptide tags are small they have a limited surface area for binding and hence usually form low affinity protein interactions. These weak interactions limit the uses of peptide tags in cases that require resistance to forces generated with macromolecular architectures or protein motors. Hence a way to create a covalent interaction with a peptide tag would be useful. It was found possible to create a covalent bond-forming peptide tag using the spontaneous isopeptide chemistry of the CnaB2 domain from the Gram-positive bacterium Streptococcus pyogenes. In the CnaB2 domain a reactive Lysine forms an isopeptide bond with an Aspartic acid, catalyzed by a Glutamic acid, creating an internal covalent linkage. Subsequently it was shown that the CnaB2 domain could be split into two parts, a domain with the Lysine and Glutamic acid called SpyCatcher and a peptide with the Aspartic acid called SpyTag, such that the isopeptide covalent linkage can be formed when SpyCatcher/SpyTag are mixed together. SpyCatcher/SpyTag was applied in this thesis and showed functionality in a wide array of scenarios. SpyCatcher/SpyTag covalently linked within the cytosol of E. coli, on surface membrane proteins of HeLa cells, and regardless of whether SpyTag was located on the N- or C-terminus or an internal site. Crystal structures of SpyCatcher/SpyTag were then obtained and it was found possible to shrink the SpyCatcher by 32 residues to a core domain of 83 residues. To create an even smaller covalent linkage system, SpyCatcher was split further to generate a protein (SpyLigase) ligating two peptide tags. The β-sheet with the reactive Lysine was removed from SpyCatcher and called KTag. SpyLigase could covalently link SpyTag and KTag. SpyLigase-induced ligation was independent of the location of SpyTag/KTag on the target proteins and was applied to create affibody polymers, which were shown to improve magnetic isolation of cells with low tumor antigen expression. Through this work protein-protein covalent linkage systems were refined and generated that have future applications for the creation of unique macromolecular structures, cellular labeling, and protein cyclization.
|
14 |
Polymer carriers of toll-like receptor-7/8 agonists as vaccine adjuvantsLynn, Geoffrey M. January 2014 (has links)
There is currently a need for vaccine adjuvants that are effective for eliciting Th1-type CD4 and CD8 T cell responses when formulated with protein and peptide-based subunit vaccines. Some of the most promising adjuvants in this regard are combined small molecule Toll-like receptor-7/8 agonists (TLR-7/8a). However, poor pharmacokinetic properties have precluded TLR-7/8a for use in vaccines. In this thesis, polymer carriers were used to control pharmacokinetics and to modulate activity of TLR-7/8a for use as vaccine adjuvants. Combinatorial synthesis and in vivo structure-activity studies were used to evaluate how properties of Polymer-TLR-7/8a conjugates (Poly-7/8a) influence innate immune activation in lymph nodes that drain the site of vaccine administration. The most striking finding was that particle formation by Poly-7/8a strongly enhances the magnitude and duration (>14 days) of innate immune activation in lymph nodes by restricting agonist biodistribution and promoting uptake by dendritic cells. Particle-forming Poly-7/8a optimized for activity were found to induce only local innate immune activation (not systemic) and were effective for eliciting Th1-type CD4 and CD8 T cells that mediated protection against infectious challenge. Based on the importance of particle formation for activity of Poly-7/8a, thermo-responsive Poly-7/8a were developed that exist as single water-soluble macromolecules in solution but undergo temperature-driven particle formation in vivo. In conclusion, polymer carriers of TLR-7/8a represent a versatile and effective platform for modulating innate immune activity and warrant further investigation as a class of adjuvants for vaccines.
|
15 |
Aqueous droplet networks for functional tissue-like materialsVillar, Gabriel January 2012 (has links)
An aqueous droplet in a solution of lipids in oil acquires a lipid monolayer coat, and two such droplets adhere to form a bilayer at their interface. Networks of droplets have been constructed in this way that function as light sensors, batteries and electrical circuits by using membrane proteins incorporated into the bilayers. However, the droplets have been confined to a bulk oil phase, which precludes direct communication with physiological environments. Further, the networks typically have been assembled manually, which limits their scale and complexity. This thesis addresses these limitations, and thereby enables prospective medical and technological applications for droplet networks. In the first part of the work, defined droplet networks are encapsulated within mm-scale drops of oil in water to form structures called multisomes. The encapsulated droplets adhere to one another and to the surface of the oil drop to form interface bilayers that allow them to communicate with each other and with the surrounding aqueous environment through membrane pores. The contents of the droplets can be released by changing the pH or temperature of the surrounding solution. Multisomes have potential applications in synthetic biology and medicine. In the second part of the work, a three-dimensional printing technique is developed that allows the construction of complex networks of tens of thousands of heterologous droplets ~50 µm in diameter. The droplets form a self-supporting material in bulk oil or water analogous to biological tissue. The mechanical properties of the material are calculated to be similar to those of soft tissues. Membrane proteins can be printed in specific droplets, for example to establish a conductive pathway through an otherwise insulating network. Further, the networks can be programmed by osmolarity gradients to fold into designed shapes. Printed droplet networks can serve as platforms for soft devices, and might be interfaced with living tissues for medical applications.
|
16 |
Imaging the assembly of the Staphylococcal pore-forming toxin alpha-HemolysinThompson, James Russell January 2009 (has links)
Alpha-hemolysin is a pore-forming toxin secreted by pathogenic Staphylococcus aureus. Its spontaneous oligomerization and assembly into a trans-bilayer beta-barrel pore is a model for the assembly of many other pore-forming toxins. It is studied here in vitro as a means to probe general membrane protein oligomerization and lipid bilayer insertion. This thesis details the results of experiments to develop and implement a novel in vitro lipid bilayer system, Droplet-on-Hydrogel Bilayers (DHBs) for the single-molecule imaging of alpha-hemolysin assembly. Chapter 2 describes the development of DHBs and their electrical characterization. Experiments show the detection of membrane channels in SDS-PAGE gels post-electrophoresis and DHBs use as a platform for nanopore stochastic sensing. Chapter 3 describes the engineering and characterization of fluorescently-labelled monomeric alpha-hemolysin for use in protein assembly imaging experiments described in Chapter 6. Chapter 4 describes the characterization of DHB lipid fluidity and suitability for single-molecule studies of membrane protein diffusion. In addition, a novel single-particle tracking algorithm is described. Chapter 5 describes experiments demonstrating simultaneous electrical and fluorescence measurements of alpha-hemolysin pores embedded within DHBs. The first multiple-pore stochastic sensing in a single-lipid bilayer is also described. Chapter 6 describes experiments studying the assembly of alpha-hemolysin monomers in DHBs. Results show that alpha-hemolysin assembles rapidly into its oligomeric state, with no detection of long-lived intermediate states.
|
17 |
Membrane protein mechanotransduction : computational studies and analytics developmentDahl, Anna Caroline E. January 2014 (has links)
Membrane protein mechanotransduction is the altered function of an integral membrane protein in response to mechanical force. Such mechanosensors are found in all kingdoms of life, and increasing numbers of membrane proteins have been found to exhibit mechanosensitivity. How they mechanotransduce is an active research area and the topic of this thesis. The methodology employed is classical molecular dynamics (MD) simulations. MD systems are complex, and two programs were developed to reduce this apparent complexity in terms of both visual abstraction and statistical analysis. Bendix detects and visualises helices as cylinders that follow the helix axis, and quantifies helix distortion. The functionality of Bendix is demonstrated on the symporter Mhp1, where a state is identified that had hitherto only been proposed. InterQuant tracks, categorises and orders proximity between parts of an MD system. Results from multiple systems are statistically interrogated for reproducibility and significant differences at the resolution of protein chains, residues or atoms. Using these tools, the interaction between membrane and the Escherichia coli mechanosensitive channel of small conductance, MscS, is investigated. Results are presented for crystal structures captured in different states, one of which features electron density proposed to be lipid. MD results supports this hypothesis, and identify differential lipid interaction between closed and open states. It is concluded that propensity for lipid to leave for membrane bulk drives MscS state stability. In a subsequent study, MscS is opened by membrane surface tension for the first time in an MD setup. The gating mechanism of MscS is explored in terms of both membrane and protein deformation in response to membrane stretch. Using novel tension methodology and the longest MD simulations of MscS performed to date, a molecular basis for the Dashpot gating mechanism is proposed. Lipid emerges as an active structural element with the capacity to augment protein structure in the protein structure-function paradigm.
|
18 |
Engineering antibodies to study and improve immunomagnetic isolation of tumour cellsJain, Jayati January 2013 (has links)
Cell separation based on antibody-targeted magnetic beads has been widely used in a number of applications in immunology, microbiology, oncology and more recently, in the isolation of circulating tumour cells (CTCs) in cancer patients. Although other cell separation techniques such as size based cell filtration and Fluorescence Activated Cell Sorting have also been in popular use, immunomagnetic cell isolation possesses the advantages of high throughput, good specificity and reduced cell stress. However, certain fundamental features of the cell-bead interface are still unknown. In this study, some of the key features of the cell-bead synapse were investigated in an effort to improve the efficiency of immunomagnetic cell isolation and reduce its dependence on high expressing cell surface markers. A clinically relevant antibody fragment (Fab) against tyrosine kinase receptor HER2 was applied to study the immunomagnetic isolation of HER2 expressing cancer cells. First, the minimum number of target proteins required on a cell for it to be isolated was determined. Second, the importance of the primary antibody affinity was investigated, using a series of Fab mutants with known kinetics and it was shown that despite starting with sub-nanomolar affinity, improving Fab affinity increased cell isolation. Third, the influence of the connection between the primary antibody and the bead was studied by comparing Fab bridged to the magnetic bead via a secondary antibody, Protein L or streptavidin; the high affinity biotin-streptavidin linkage increased isolation sensitivity by an order of magnitude. Fourth, the effect of manipulating cytoskeletal polymerization and cell membrane fluidity using small molecules was tested; cholesterol depletion decreased isolation and cholesterol loading increased cell isolation. The insights from these observations were then applied to isolate a panel of cell lines expressing a wide range of surface HER2. While the standard approach isolated less than 10% of low HER2 expressing cancer cells from spiked rabbit and human blood, our enhanced approach with the optimized cholesterol level, antibody affinity and antibody-bead linkage could specifically isolate more than 80% of such cells. The final part of this work focussed on developing an antibody clamp that could physically restrict the antigen within its binding site on the Fab and prevent antigen dissociation, using the HER2-Fab complex and the anti-myc peptide antibody 9E10. Work from this thesis provides useful insights into the molecular and cellular parameters guiding immunomagnetic cell isolation and can be used to extend the range of target receptors and biomarkers for tumour cell isolation and other types of cell separation, thereby enhancing the power and capacity of this approach.
|
Page generated in 0.0438 seconds