Spelling suggestions: "subject:"nanocanaux"" "subject:"monocanaux""
1 |
Etude de couches minces déposées par pulvérisation magnétron postionisée pour l'ingénierie de contraintes - cas du MoCr et de nano-canaux de carboneTranchant, Julien 05 November 2007 (has links) (PDF)
Cette thèse est dédiée à l'étude de couches minces à contraintes contrôlées par pulvérisation magnétron ionisée. Cette technique utilise un plasma secondaire inductif, créé via une spire alimentée en RF (13,56 MHz), pour post-ioniser les espèces pulvérisées, comme le montre l'analyse du plasma par spectroscopie d'émission optique. Ainsi, en agissant sur la pression d'argon, la polarisation du substrat et la puissance RF dans la spire, le flux et l'énergie des ions arrivant sur le substrat peuvent être modifiés, ainsi que les propriétés et la microstructure des films engendrés. Des films de MoCr, matériau utilisé pour la réalisation de MEMS par ingénierie de contraintes, ont été déposés par ce procédé. Leur caractérisation a permis d'établir le lien entre conditions de dépôt et caractéristiques des films, en termes de texture, de taille de cristallites et de microdéformations par DRX, de composition des couches par EDX et de propriétés mécaniques par nano-indentation (dureté et module d'Young, également estimé par DRX en traction). Les contraintes résiduelles des films ont été évaluées par les méthodes de la courbure et du sin²y, et la bonne corrélation avec des observations MET a permis une description des mécanismes responsables des contraintes dans ces films, en établissant le lien entre conditions de synthèse, microstructure, morphologie et état de contraintes. D'autre part, le contrôle des contraintes par ce procédé a été appliqué à l'élaboration et l'optimisation de nano-canaux de carbone amorphe, créés par contrôle des motifs de délamination de films compressifs, en utilisant des substrats comportant des lignes définies par photolithographie comme gabarits.
|
2 |
Modélisation hybride et multi-échelle pour la simulation des écoulements et des transferts thermiques dans les micro-canaux / Hybrid and multi-scale modeling for the simulation of fluid flows and heat transfer in microchannelsVu, Van Huyen 13 December 2016 (has links)
L'objectif de cette thèse est de mettre en œuvre une description multi-échelle adaptée aux écoulements de fluides dans des micro-/nano-conduites. Cette approche doit permettre de décrire, aussi bien les petites échelles relatives aux interactions du fluide avec les atomes du mur, que les grandes échelles de l’écoulement engendrées par les conditions aux limites d'entrée/sortie du canal. Pour cela, nous avons développé une méthode qui couple une modélisation continue des écoulements et des transferts de chaleur dans le cœur du canal avec une modélisation discrète proche des parois, basée sur une représentation atomistique du fluide et du mur.Les équations de Navier-Stokes et de l’énergie, couplées à une équation d’état, sont approximées par une méthode de volumes finis dans le cœur de l’écoulement alors que des simulations de dynamique moléculaire sont utilisées pour représenter finement les interactions entre le fluide et la paroi. Cette approche hybride nécessite la transmission d’informations entre les modélisations : les grandeurs moyennées moléculaires sont imposées comme conditions aux limites pour le modèle continu, et la dynamique sous contrainte, couplée à un thermostat de Langevin, est utilisée pour piloter l’échelle moléculaire. Une représentation par des plots moléculaires locaux de petite taille, intelligemment répartis le long de l’interface entre le fluide et le mur, permet de traiter des écoulements et des transferts dans des canaux de très grands allongements, pour des coûts de calcul raisonnables.Après une partie de validation, des simulations hybrides multi-échelles d’écoulements dans des canaux constitués de parois en platine ont été menées pour de l’argon en phase liquide (incompressible) ou gazeuse (compressible), en tenant compte éventuellement du changement de phase au voisinage de la paroi / The main objective of this thesis is to model the multi-scale heat and fluid flows in micro-/nano channels. This method must be able of capturing at the same time the fluid/solid interaction at the small scale but also the flows induced by the inlet/outlet boundary conditions at the large scale. To this aim, we have adopted an approach coupling the continuum model in the bulks of the channel and the discrete model at the vicinity of the wall, based on an atomistic representation of the fluid and the solid.The Navier-Stokes and energy equations, coupled with an equation of state, are approximated by a finite volume method and the molecular dynamics simulations are used to finely represent the interaction between the fluid and the solid. This hybrid method requires information transmission between the former two regions: averaged quantity in molecular dynamics simulations are imposed as boundary conditions for the continuous model and constrained dynamics, coupled with a thermostat Langevin, is used to control in the molecular level. A set of small molecular dynamics blocks, smartly distributed all along the wall/fluid interface, allows to treat flow and heat transfers in a long micro/nano-channel with a reasonable computational cost.After a validation step, the hybrid multi-scale simulations of complex fluid flows in the channel composed of the platinum wall have been conducted for argon in incompressible liquid or compressible gaseous phase with and without phase change in the vicinity of the wall
|
Page generated in 0.0377 seconds