• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CHARACTERIZATION OF NANOCARBON-REINFORCED AND NEAT ADHESIVES IN BONDED SINGLE LAP JOINTS UNDER STATIC AND IMPACT LOADINGS

Soltannia, Babak 16 August 2013 (has links)
The effects of high loading rates (HLR), and nano reinforcement on the mechanical response of adhesively-bonded SLJs with composite adherends, subjected to different loading (strain) rates are systematically investigated. The results are then compared to those of neat thermoset resin and thermo-plastic adhesive. More specifically, nano-reinforced and neat resin bonded joints mating carbon/epoxy and glass/epoxy adherends were subjected to tensile loadings under 1.5 and 3 mm/min and tensile impacts at a loading rate of 2.04E+5 mm/min. In some cases, additional tests were conducted under 15, 150, and 1500 mm/min to obtain additional properties gained using the nano-reinforcements for use in the further numerical investigations. The HLR tests were conducted, using a modified instrumented pendulum equipped with a specially designed impact load transfer apparatus. The dispersion of nanoparticles was facilitated using a mechanical stirrer and a three-roll mill machine. The failure mechanisms were studied with a scanning electron microscope.
12

STRUCTURAL AND ELECTROCHEMICAL STUDIES OF THE LI-MN-NI-O AND LI-CO-MN-O PSEUDO-TERNARY SYSTEMS

McCalla, Eric 09 December 2013 (has links)
The improvement of volumetric energy density remains a key area of research to opti-mize Li-ion batteries for applications such as extending the range of electric vehicles. There is still improvement to be made in the energy density in the positive elec-trode materials. The current thesis deals with determining the phase diagrams of the Li-Mn-Ni-O and Li-Co-Mn-O systems in order to better understand the structures and the electrochemistry of these materials. The phase diagrams were made through careful analysis of hundreds of X-ray di raction patterns taken of milligram-scale combinatorial samples. A number of bulk samples were also investigated. The Li-Mn-Ni-O system is of particular interest as avoiding cobalt lowers the cost of the material. However, this system is very complex: there are two large solid-solution regions separated by three two-phase regions as well as two three-phase regions. Comparing quenched and slow cooled samples shows that the system trans-form dramatically when cooled at rates typically used to make commercial materials. The consequences of these results are that much of the system must be avoided in order to guarantee that the materials remain single phase during cooling. This work should therefore impact signi cantly researchers working on composite electrodes. Two new structures were found. The first was Li-Ni-Mn oxide rocksalt structures with vacancies and ordering of manganese which were previously mistakenly identi ed as LixNi2xO2. The other new structure was a layered oxide with metal site vacancies allowing manganese to order on two superlattices. The electrochemistry of both these materials is presented here. Finally, the region where layered-layered composites form during cooling has been determined. These materials were long looked for along the composition line from Li2MnO3 to LiNi0.5Mn0.5O2 and the most significant consequence of the actual locations of the end-members is that one of the structures contains a high concentration of nickel on the lithium layer. Layered-layered nano-composites formed in this system are therefore not ideal positive electrode materials and it will be demonstrated that single-phase layered materials lead to better electrochemistry.
13

[en] ASPECTS OF SYNTHESIS BY PREFERENTIAL REDUCTION AND CHARACTERIZATION OF CO-ZNO NANOCOMPOSITE. / [pt] ASPECTOS DA SÍNTESE POR REDUÇÃO PREFERENCIAL E CARACTERIZAÇÃO DO NANOCOMPÓSITO CO-ZNO

MARIO SERGIO SANT ANNA GONCALVES 26 October 2005 (has links)
[pt] O trabalho aborda a elaboração do compósito Co-ZnO por redução preferencial com hidrogênio. Inicialmente foi desenvolvida uma avaliação termodinâmica das principais reações para o processo tais como, a pirólise dos nitratos de cobalto e de zinco, responsável pela obtenção dos respectivos óxidos, e a redução destes pelo hidrogênio. O estudo expe rimental foi realizado de forma a se avaliar o efeito de variáveis importantes (fluxo, temperatura e pressão parcial do gás reagente) sobre a cinética das reações de redução. Observou-se a viabilidade de se estabelecer condições onde ocorresse a redução preferencial do óxido de cobalto em relação ao óxido de zinco. Como exemplo pode-se mencionar que na faixa de temperatura de realização dos experimentos de redução do óxido de cobalto (590K - 790K), foram obtidas conversões entre 20 e 80%, dentro de um intervalo de tempo compreendido entre 1 e 15 minutos e com fluxo de hidrogênio da ordem de 0,18L/min. Por sua vez, o compósito pode ser obtido em ensaio realizado na temperatura de 690K pelo tempo de 20 minutos mantido o mesmo fluxo. As caracterizações dos mate riais obtidos foram realizados por difração de raios-X, microscopia eletrônica de varredura/EDS e microscopia eletrônica de transmissão, sendo possível identificar óxidos relativamente puros e o compósito Co-ZnO bastante homogêneo e constituído por partículas na escala nanométrica, características estas, desejáveis para materiais desta natureza. / [en] This work covers the Co-ZnO nano-composite synthesis by hydrogen preferential reduction of these metals oxides which, in turn, were obtained by simultaneous dissociation of their nitrates. Initially it has been developed a thermodynamic evaluation of the main process reactions such as the zinc and cobalt nitra tes pyrolises and the respective oxides reduction by hydrogen. The experimental work was carried out in order to study the effect of the most important variables on the reduction reaction kinetics of the cobalt oxide as well as to investigate some experimental conditions for the formation of the Co-ZnO nanocomposite. It can be said that cobalt oxide is completely and preferentially reduced in 20 minutes at 690K, then allowing the composite formation at this temperature. The materials involved in the process were characterized by X-R diffraction (oxides and co-obtained oxides) and electronic microscopy (SEM/EDS, TEM), being possible to identify a Co-ZnO homogeneous and containing particles in the nano range scale.
14

[en] SYNTHESIS, PROCESSING AND CHARACTERIZATION OF CU-CNT NANOCOMPOSITE MATERIALS / [pt] SÍNTESE, PROCESSAMENTO E CARACTERIZAÇÃO DE NANOCOMPÓSITOS CU-CNT

MARTIN EMILIO MENDOZA OLIVEROS 01 April 2009 (has links)
[pt] O aumento do interesse em materiais nanoestruturados, nos anos recentes, tem incentivado o desenvolvimento de materiais compósitos de matriz metálica reforçados com nanotubos de carbono. No presente estudo foi produzido um material nano compósito de matriz de cobre contendo nanotubos de carbono (CNT 2% peso), a partir de síntese por métodos químicos. O procedimento começa pela dissociação do nitrato de cobre na presença de CNT e um tensoactivo aniônico a 250°C e sua posterior redução in-situ com atmosfera de Hidrogênio sobre pressão de 1 atm. a 350°C. A análise por difração de Raios X confirmou a formação de CuO puro no momento da dissociação, assim como de cobre metálico após a redução. A presença dos CNT foi detectada nas duas etapas por essa técnica. Análises por Microscopia Eletrônica de Transmissão (MET)mostram que o tamanho médio de partícula do óxido e de 30nm em quanto que para o material reduzido está na faixa de 150-300nm, apresentando-se boa dispersão dos nanotubos. O material reduzido foi compactado, em forma de pastilhas, por pressão uniaxial a frio sob 25MPa e, posteriormente, por pressão isostática a 150MPa. O material compactado foi sinterizado em atmosfera de Argônio a 650°C por 15 min. Análise por Microscopia Eletrônica de Varredura (MEV) assim como TEM do material sinterizado, mostrou uma distribuição heterogênea de tamanho de grão na faixa de 100nm a 4 μm. Medidas de resistividade elétrica mostram que o compósito apresenta uma resistividade sensivelmente menor a baixa temperatura (2x10(-6) ? .cm) a 83°K que o cobre sem nanotubos (5.9x10(-6) ? .cm). / [en] The increasing interest in nanostructure materials in recent years has provided incentive to develop nanostructure composite materials with metal matrix, reinforced with carbon nanotubes. In the present work, copper matrix nano composite with carbon nanotubos (2% wt) was produced by chemical synthesis method. The procedure begins by the copper nitrate dissociation containing SWCNT and anionic tensoactive agent at 250°C, followed by in-situ reduction at 350°C, under hydrogen atmosphere at pressure of 1atm. CuO and Cu formation was confirmed by X ray diffraction at the moment of dissociation and reduction respectively. CNTs presence was detected at both steps by this characterization method. Transmission Electron Microscopy analysis, estimate particles grain size of 30nm for CuO powder while Cu powder particles were observed to be in the 100-300nm range, showing good dispersion of CNT. Bulk nano-composite pellets of the reduced material were obtained by pre-compactation under uniaxial pressure of 17 MPa followed by issostatic pressure of 150MPa. Sinterizing of the compacted material was carry out at 650°C under Argon atmosphere by 15 min. Scanning Electron Microscopy and Transmission Electron Microscopy analysis of the sinterized material showed an heterogeneous grain size distribution in the 100nm to 4 ìm range. Electric resistivity measures show that the nanocomposite material has lower resistivity at low temperature (2x10(-6) ? .cm) at 83°K than the copper without carbon nanotubes (5.9x10(-6) ? .cm).
15

Fonctionnalisation chimique des nanocristaux de cellulose par acylation avec les esters de vinyle : impact sur les propriétés de revêtements chargés en nanocellulose / Chemical functionalization of cellulose nanocrystals (CNC) by acylation with vinyl esters : impact on the properties of coatings filled with nanocellulose

Brand, Jérémie 18 November 2016 (has links)
Ce travail de thèse a pour objectif d’élaborer de nouveaux revêtements composites en utilisant les nanocristaux de cellulose (NCC) comme additifs biosourcés. Pour pallier au problème d’incompatibilité entre les charges hydrophiles et les matrices hydrophobes, une méthode simple à partir des esters de vinyle a été développée pour fonctionnaliser la surface des NCC. Une étude préliminaire réalisée à partir de l’acétate de vinyle utilisé comme réactif modèle, a d’abord permis d’optimiser les conditions de réaction. Ce protocole expérimental a ensuite été étendu à d’autres esters de vinyle fonctionnels, confirmant le caractère polyvalent de la méthode. Les NCC non modifiés et acétylés ont été dispersés dans des matrices acryliques (latex) ou polyuréthane (réticulable), afin d’étudier leur impact sur les performances mécaniques et barrières des composites. Une amélioration des propriétés mécaniques et barrières à l’oxygène a pu être observée dans certains cas, mais l’acétylation de surface des NCC n’a pas conduit à de meilleures performances. Une solution bicouches constituée d’un film 100 % NCC acétyles recouvert de polymère a alors été envisagé et a d’augmenter fortement les propriétés barrières à l’oxygène des différents matériaux. Certains NCC fonctionnalisés ont également été dispersés dans une matrice polydiméthylsiloxane, potentiellement utilisable comme revêtement protecteur pour l’aérospatial. Une amélioration notable de la stabilité thermique et optique sous irradiations UV dans des conditions géostationnaires a alors été observée. / The objective of this research work consist in the elaboration of novel compositecoatings using cellulose nanocrystals (CNC) as biobased additives. To palliate the problem ofincompatibility between the hydrophilic filler and the hydrophobic matrices, a simple methodbased on vinyl esters was developed to functionalize the CNC surface. A preliminary studyperformed with vinyl acetate selected as model reactant first allowed optimizing the reactionconditions. This experimental protocol was subsequently extended to other functional vinylesters to confirm the versatility of the method. The unmodified and acetylated CNC weredispersed in acrylic polymers (latex) or polyurethane (cross-linked resin) matrices, to studytheir impact on the mechanical and barrier performances of the composites. An improvementof the mechanical and barrier properties could be observed in some cases, but the CNCacetylation did not improve further the performances. A bi-layer approach consisting in afilm of 100 % of acetylated CNC coated with the polymer was then envisaged, and allowedincreasing significantly the oxygen barrier properties of the different resins. Some of thefunctionalized CNC were incorporated into a polydimethylsiloxane matrix, for a potential useas protective aerospace coating. A significant improvement in thermal stability and in opticalstability under UV irradiation in geostationary conditions was then observed.
16

Caractérisation morphologique et homogénéisation élastique et visco-élastique de polymères renforcés de nano-plaquettes d'argile / Morphological characterization and homogenization in elasticity and visco-elasticity of nano-clay reinforced polymers

Gelineau, Pierre 16 April 2015 (has links)
L'objectif de ce travail est de comprendre l'influence de nano-plaquettes d'argile sur le comportement mécanique de polymères nano-renforcés. Cette compréhension nécessite une caractérisation fine de la micro-structure mais aussi l'étude du comportement mécanique de ces matériaux (en élasticité et en visco-élasticité). A l’échelle microscopique, la taille des agrégats de plaquettes d'argile et la distribution spatiale de ces agrégats ont été observées au TEM. A l’échelle nanoscopique, le d-spacing entre plaquettes d'un agrégat a été mesuré en utilisant la XRD. Ces techniques expérimentales ont permis de mettre en évidence une micro-structure intercalée. A l’échelle macroscopique, des essais de traction monotones ainsi que des essais dynamiques (DMA) ont été réalisé afin d'étudier le comportement mécanique des matériaux. Pour prédire les propriétés élastiques macroscopiques, la combinaison de deux approches a été envisagée; modèles hybrides et modèles matrice-inclusion. Cet outil permet d'anticiper les propriétés de ces matériaux sans avoir à les fabriquer ainsi que de tester simplement l'influence de la micro-structure sur le comportement macroscopique. Le schéma d'homogénéisation mis en place permet de prendre en compte la micro-structure intercalée d'une matrice polymère renforcée par des empilements de sandwiches bi-couches (plaquettes d'argile et polymère). On observe, en élasticité, un bon encadrement des données expérimentales. Une extension de cette approche en visco-élasticité a été développée. Les prédictions en visco-élasticité comparées aux données expérimentales ont fourni une bonne estimation du module complexe et des modules de conservation et de perte. / This work aims to understand the influence of nano-clay platelets on the mechanical behavior of nano–reinforced polymers. This understanding requires a good description of the micro-structure and a characterization of the mechanical behavior of these materials (elastic and visco-elastic). At the micro-scale, the size of the aggregates of nano-platelets and their spatial distribution were observed using TEM. At the nano-scale, the d-spacing between platelets within an aggregate was measured using XRD. These experimental techniques highlighted intercalated micro-structures. At the macroscale, monotonic tensile tests and Dynamic Mechanical Analysis (DMA) have been performed to study the mechanical behavior of the materials. To predict the macroscopic elastic behavior, the combination of two approaches has been considered; hybrid and matrix-inclusion models. This needed tool allows to anticipate the behavior of these materials without process them. By the consideration of the morphology into the modeling scheme, the influence of the micro-structure on the macroscopic behavior can be studied. The considered multiscale approach is able to estimate the macroscopic behavior of an intercalated nano-composite, in which a polymeric matrix is reinforced by stacks of bi-layers sandwiches (nano-clay platelets and polymer). It was observed from their comparison that the modeling predictions well bounded the experimental data in elasticity. This multi-scale approach was extended in the context of viscoelasticity and the predictions in this context were in good agreement with the experimental data for the complex modulus and for the storage and loss moduli.
17

Strain Monitoring of Carbon Fiber Composite with Embedded Nickel Nano-Composite Strain Gage

Johnson, Timothy Michael 12 April 2011 (has links) (PDF)
Carbon fiber reinforced plastic (CFRP) composites have extensive value in the aerospace, defense, sporting goods, and high performance automobile industries. These composites have huge benefits including high strength to weight ratios and the ability to tailor their properties. A significant issue with carbon fiber composites is the potential for catastrophic fatigue failure. To better understand this fatigue, there is first a huge push to measure strain accurately and in-situ to monitor carbon fiber composites. In this paper, piezoresistive nickel nanostrand (NiNs) nanocomposites were embedded in between layers of carbon fiber composite for real time, in situ strain monitoring. Several different embedding methods have been investigated. These include the direct embedding of a patch of dry NiNs and the embedding of NiNs-polymer matrix nanocomposite patches which are insulated from the surrounding carbon fiber. Also, two different polymer matrix materials were used in the nanocomposite to compare the piezoresistive signal. These nanocomposites are shown to display repeatable piezoresistivity, thus becoming a strain sensor capable of accurately measuring strain real time and in-situ. This patch has compatible mechanical properties to existing advanced composites and shows good resolution to small strain. This method of strain sensing in carbon fiber composites is more easily implemented and used than other strain measurement methods including fiber Bragg grating and acoustic emissions. To show that these embedded strain gages can be used in a variety of carbon fiber components, two different applications were also pursued.
18

Mechanical and thermal behavior of multiscale bi-nano-composites using experiments and machine learning predictions

Daghigh, Vahid 01 May 2020 (has links)
The mechanical and thermal properties of natural short latania fiber (SLF)-reinforced poly(propylene)/ethylene-propylene-diene-monomer (SLF/PP/EPDM) bio-composites reinforced with nano-clays (NCs), pistachio shell powders (PSPs), and/or date seed particles (DSPs) were studied using experiments and machine learning (ML) predictions. This dissertation embraces three related investigations: (1) an assessment of maleated polypropylene (MAPP) coupling agent on mechanical and thermal behavior of SLF/PP/EPDM composites, (2) heat deflection temperature (HDT) of bio-nano-composites using experiments and ML predictions, and (3) fracture toughness ML predictions of short fiber, nano- and micro-particle reinforced composites. The first project (Chapter 2) investigates the influence of MAPP on tensile, bending, Charpy impact and HDT of SLF/PP/EPDM composites containing various SLF contents. The second project (Chapter 3) introduces two new bio-powderditives (DSP and PSP) and characterizes the HDT of PP/EPDM composites using experiments and K-Nearest Neighbor Regressor (KNNR) ML predictions. The composites contain various contents of SLF (0, 5, 10, 20, and 30wt%), NCs (0, 1, 3, 5wt%), micro-sized PSPs (0, 1, 3, 5wt%) and micro-sized DSPs (0, 1, 3, 5wt%). The third project (Chapter 4) characterizes the fracture toughness of the same composite series used in the second project, by applying Charpy impact tests, finite element analysis, and a ML approach using the Decision Tree Regressor (DTR) and Adaptive Boosting Regressor (ABR). 2wt% MAPP addition enhanced the composite tensile/flexural moduli and strength up to 9% compared with the composites with zero MAPP. In addition, energy impact absorption was profoundly increased (up to78%) and HDT (up to 4 Co) was improved upon MAPP addition to the composites. SLF, NC, DSP and PSP could separately and conjointly increase HDT and fracture toughness values. The KNNR ML approach could accurately predict the composite’s HDT values and, Decision Tree Regressor (DTR) and Adaptive Boosting Regressor ML algorithms worked well with fracture toughness predictions. Pictures taken through a transmission electron microscope, scanning electron microscope and X-Ray proved the NC dispersion and exfoliation as one of the factors in HDT and fracture toughness improvements.
19

Development of Conductive Green Polymer Nano-Composite for use in Construction of Transportation Infrastructure

Gissentaner, Tremaine D. January 2014 (has links)
No description available.
20

Cohesive zone modeling of the interface in linear and nonlinear carbon nano-composites

Radhakrishnan, Vikram January 2008 (has links)
No description available.

Page generated in 0.0713 seconds