Spelling suggestions: "subject:"nanoheater device"" "subject:"andtheater device""
1 |
New approaches for high spatial and temporal resolution nanothermometry : development of hot wire nano heater devices and investigation of thermosensitive materials with fluorescent and spin crossover properties / Nouvelles approches de la nanothermométrie à hautes résolutions spatiales et temporelles : développement de dispositifs de chauffage à l'échelle nanométrique et études de matériaux thermosensibles par la fluorescence et les propriétés de la transition de spinKraieva, Olena 26 October 2015 (has links)
L'objectif de cette thèse était de développer de nouvelles méthodes micro- et nano-thermométriques proposant de hautes résolutions spatiales et temporelles. Dans ce cadre nous nous sommes concentrés sur deux tâches : dans un premier temps, nous avons développé un dispositif de nano-chauffage qui peut aisément servir à la caractérisation thermo-physique de matériaux à l'échelle nanométrique. Dans un second temps, en utilisant cette plate-forme nous avons étudié des matériaux thermosensibles, incluant divers luminophores et des complexes à transition de spin ainsi que leurs mélanges. Les dispositifs de nano-chauffage, basés sur des nanofils chauffés par effet Joule, ont été fabriqués par lithographie électronique conventionnelle. Grâce à leur faible inertie thermique, les dispositifs basés sur des nanofils sont particulièrement intéressants en termes de temps de réponse et de confinement des changements de température induits. La caractérisation thermique de ces éléments de chauffage a été réalisée à l'aide de méthodes électriques et optiques ainsi que de simulations par éléments finis. Nous avons montré expérimentalement que nos chauffages prodiguent des perturbations en température (1 K < DeltaT < 80 K) rapides (< µs) et spatialement localisées (< µm) lorsque stimulées par des impulsions de courant électrique. Les simulations par éléments finis reproduisent ces résultats expérimentaux avec une bonne précision et prouvent ainsi leur intérêt pour le design de tels dispositifs. Les performances thermométriques de matériaux fluorescents, incluant des colorants organiques (Rhodamine B), des nanoparticules inorganiques (PbF2:Er3+/Yb3+, CdSe) et des nanoparticules hybrides organiques/inorganiques ([Fe(Htrz)2(trz)]BF4@SiO2-pyrene), ont ensuite été étudiées. D'une manière générale, leur intérêt pour l'imagerie thermique a été démontré, mais des problèmes de stabilité rendent les mesures quantitatives difficiles avec de tels matériaux. D'un autre côté, nous avons réussi à synthétiser des films de nanoparticules du complexe à transition de spin [Fe(Htrz)2(trz)]BF4 (non-dopé). Ces films qui nous ont permis de suivre les changements de température à l'aide de mesures de réflectivité optique plus robustes. La boucle d'hystérèse thermique dans ce matériau procure un effet de mémoire thermique à long terme dont nous avons usé avec succès pour imager les changements de température très rapides (< µs) et spatialement localisés (< µm) - même après que la chaleur se soit dissipée. Cette méthode originale nous procure une combinaison sans précédent de sensitivité spatio-temporelle dans le champ de la nano-thermométrie aux applications pratiques prometteuses. / The overall objective of this PhD thesis was to develop novel micro- and nano-thermometry methods providing high spatial and temporal resolution thermal imaging. To achieve this goal we have focused on two tasks: First, we developed a nano-heater device that can be easily employed for the thermo-physical characterization of materials at the nanoscale. In a second time, using this platform we investigated thermo-sensitive materials, including different luminophores and spin crossover complexes as well as their mixtures. The nano-heater device, based on Joule-heated metallic nanowires, was fabricated by standard electron beam lithography. Due to their small thermal mass, nanowire based devices are particularly interesting in terms of response times and also in terms of confinement of the induced temperature changes. The thermal characterization of these heating elements was carried out using electrical and optical methods as well as finite element simulations. We have shown experimentally that our heaters can provide fast (< µs) and spatially well localized (< µm) T-jump perturbations (1 K < DeltaT < 80 K) driven by an electrical current pulse. Finite element simulations reproduced these experimental results with good accuracy and proved to be a powerful tool of prediction for the device design. Fluorescent materials, including organic dyes (Rhodamine B), inorganic nanoparticles (PbF2:Er3+/Yb3+, CdSe) and hybrid organic/inorganic nanoparticles ([Fe(Htrz)2(trz)]BF4@SiO2-pyrene), were then investigated for their thermometry performance. Overall, they were found useful for thermal imaging, but stability problems make quantitative measurements challenging with these materials. On the other hand, we have succeeded in synthesizing nanoparticle films of the (undoped) [Fe(Htrz)2(trz)]BF4 spin crossover complex, which allowed us to infer temperature changes through more robust optical reflectivity measurements. The thermal hysteresis loop in this material provides a long-term thermal memory effect which we used successfully to image very fast (˜µs) transient temperature changes with high spatial resolution (sub-µm) - even when the heat is dissipated. This original method provides an unprecedented combination of spatio-temporal sensitivity within the field of nanothermometry with promising potential applications.
|
Page generated in 0.0454 seconds