• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterisation of metal dichalcogenide based nano materials

Wen, Yan January 2015 (has links)
WS2, MoS2 and ZrS2 nanomaterials in various forms, such as nanoflakes, inorganic fullerene-like nanoparticles and nanorattles, were synthesised using two modified conventional techniques: solid-gas reaction and chemical vapour deposition. Both of these techniques are essentially based on reactions between metal oxides/chlorides and sulphur at a relatively low temperature in the range of 350-950°C in H2/Ar. Compared with other common techniques, these techniques are cost effective and environmentally friendly and produce well-crystallised WS2, MoS2 and ZrS2 nanomaterials with controllable sizes and morphologies, arising from the involvement of simple equipment and a H2S-free process. With the solid-gas reaction technique, the formation of WS2 and MoS2 inorganic fullerene like (IF) particles follows a so-called "template growth" mechanism, which implies that the sizes of the final products resemble their metal oxide raw materials. Therefore, because of the usage of WO3 nanoparticles and MoO3 submicron particles as precursors, nanosized WS2 (<100 nm) and submicron-sized MoS2 (approximately 500 nm) particles were generated, respectively. Further investigation of the reaction mechanism reveals that H2 is a vital factor in the formation of WS2 IF nanoparticles. Without H2, WS2 nanoflakes are instead produced, which is attributed to that the formation of WS2 IF nanoparticles based on the synergy between H2 reduction and S sulphidation. Using the CVD technique, WS2 IF nanoparticles with sizes below 100 nm were readily produced. However, the initially formed WS2 IF nanoparticles were poorly crystallised with numerous defects and disconnections, which is consistent with the results of other researchers. In this project, an additional annealing process was introduced to eliminate these defects and disconnections. After this process, well-crystallised WS2 IF nanoparticles were formed, which should exhibit improved mechanical properties and stability. In addition to the WS2 IF nanoparticles, ZrS2 was also prepared using the same route from the reaction of ZrCl4 with S. Unlike the WS2, the generated ZrS2 was in the form of nanoflakes with sizes below 30 nm. Consequently, these nanoflakes exhibited a strong quantum confinement effect and good photocatalytic performance for the decomposition of 4-NP. Based on the investigation of the WO3 sulphidation mechanism, novel W@WS2 and WS2@WS2 nanorattles were designed and first synthesised using a simple gas-solid reaction. The as-synthesised nanorattles were composed of tiny, moveable W/WS2 cores and continuous WS2 shells with much larger sizes. By simply tailoring the processing parameters, several types of nanostructures, including WS2 nanoflakes, IF nanoparticles and nanorattles (with desirable core size and shell thickness) were selectively prepared. Moreover, it was observed for the first time that the as-prepared nanorattles exhibited excellent catalytic activities, which were close to or even better than their much more expensive Au- and Pt-based counterparts.
2

Characterization of Immobilized Aqueous Quantum Dots: Efforts in High-Resolution Microscopy

Young, Amber Lynn January 2011 (has links)
Semiconductor quantum dots (QDs), particles several nanometers in diameter, exhibit a range of interesting properties that arise as a result of quantum confinement. Among these characteristics is photoluminescence, and unlike traditional fluorophores, the fluorescence emission of QDs is characterized by broad absorption and narrow emission that is a function of the particle diameter. This allows high spatial resolution to be achieved using spectral discrimination of closely spaced QDs.We propose applying QD fluorescence as a tool to sense the local environment of the QD to achieve wide-field sensing at high-resolution. Many factors influence QD fluorescence from the growth parameters and choice of ligand to the local environment of the QD post-fabrication. Nano-materials in the local QD environment influence the spectral or temporal characteristics of the QD fluorescence and detecting these changes enables identification of the location and motion of these nanoparticles with resolution on the order of a few nanometers.We have fabricated aqueous colloidal cadmium telluride QDs, experimenting with the choice of thiol-based ligand to influence the chemistry in post-processing and application. A wide range of tools have been used to characterize the spectral and physical properties of the QDs. We have successfully immobilized QDs on a variety of substrates including glass coverslips, silicon and indium tin oxide coated glass. Immobilization is achieved with even and consistent distributions of QDs on the substrate by using self-assembly of the colloidal particles onto substrates functionalized with N1-(3-Trimethoxysilylpropyl)diethylenetriamine (DETA) silane.Using fluorescence microscopy we have successfully demonstrated the detection of interactions between QDs and other nano-materials including green fluorescent protein and gold seed particles, demonstrating that QDs may, in principle, be used in a wide field microscopy technique to sense nano-materials with high resolution.
3

An Investigation into Friction Stir Welding of Copper Niobium Nanolamellar Composites

Cobb, Josef Benjamin 12 August 2016 (has links)
The workpiece materials used in this study are CuNb nano-layered composites (NLC) which are produced in bulk form by accumulative roll bonding (ARB). CuNb NLC panels are of interest because of their increase in strength and radiation damage tolerance when compared to either of their bulk constituents. These increased properties stem from the bi-metal interface, and the nanometer length-scale of the layers. However to be commercially viable, methods to successfully join the ARB NLC which retain the layered structure panels are needed. Friction stir welding is investigated in this study as a possible joining method that can join the material while maintaining its layered structure and hence its properties. Mechanical properties of the weld were measured at a macro level using tensile testing, and at a local level via nano-indentation. The post weld layer structure was analyzed to provide insight into the flow paths. The grain orientation of the resulting weld nugget was also analyzed using electron backscatter diffraction and transmission Kikuchi diffraction. Results from this study show that the nano-layered structure can be maintained in the CuNb NLC by control of the friction stir welding parameters. The resulting microstructure is dependent on the strain experienced during the joining process. A variation in layer thickness reduction is correlated with increasing shear strain. Above a critical level of shear strain, the NLC microstructure was observed to fragment into equiaxed grains with a higher hardness than the NLC panels. Results from this study are also used to further the understanding of the material flow and hot working conditions experienced during the friction stir welding process.
4

Multi-scale simulation of filtered flow and species transport with nano-structured material

Yang, Xiaofan January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Zhongquan Zheng / A nano-material filter is an efficient device for improving indoor environmental quality (e.g. smoke reduction, air purification in buildings). Studying the effectiveness of nano-materials used in the device by computer simulation is challenging because very different size scales are involved. Therefore, numerical methods have to be developed to accommodate varying magnitudes of scales. In the current study, the simulation has been divided into three scales: macro-, micro- and nano-scale. The numerical schemes at each scale are targeted at a particular scale; however, the relationship of the general transport phenomena, physical mechanisms and properties among different scales are uniquely linked at the same time. The objective of the macro-scale simulation was to design and study a gas filter constructed with nano-material pellets. The filter was considered a packed-bed tube filled with manufactured nano-material pellets. Commercial computational fluid dynamics (CFD) packages were used along with the embedded programming macros. In the filtration process, we focused on the flow and species transport phenomena through the porous substrate. The mathematical/numerical models were built and tested based on the physical models used in the experimental setups for different materials that were tested. The results from the numerical models were validated and compared well to experimental data obtained from the pressure drop measurements and the adsorption (breakthrough) tests. In the micro-scale simulation, a modified immersed-boundary method (IBM) with the Zwikker-Kosten (ZK) porous model and the high-order schemes was validated and applied to simulate a representative porous unit that represented a periodic array of solid/porous cylinders. In the periodic unit, the solid cylinder case was used to validate the high-order schemes by comparing it to the results obtained from the commercial CFD software. The relationship between the pressure gradient and the porosity (Blake-Kozeny equation) was determined from this level and fed back to the macro-scale simulation, which provided a link between the two scales. In the porous cylinder case, both flow field and species transport were investigated with a porous model similar to the one used in the macro-scale. The species concentration change was calculated and found to be nonlinearly related to the adsorption coefficient. In the nano-scale simulation, a molecular dynamics (MD) simulation and a coupled molecular-continuum scheme were applied to solve the momentum and the mass transport problems at the molecular level at which the traditional continuum theory is no longer applicable. Both schemes were verified from the surface slip behavior study compared to the literature. The scale and shear effects in the Coutte flow were investigated, showing that in the micro-scale and macro-scale, the slip behavior could be neglected since it was only important in much smaller scales. The same hybrid scheme was then applied to a diffusion model with nano-pores constructed in the solid substrate. The adsorptions between various gases and the carbon substrate were simulated. The mass fluxes cross the fluid/solid interfaces were counted and both self-diffusivity and transport diffusivity were estimated and compared to their respective values found in the literature. The transport properties are closely related to the species transport (Fick’s law) in the macroscopic simulations. Linear concentration profiles in the channel were obtained based on those transport properties for various gases going through different sizes of nano-pores, which, as a connection to the continuum model, were to be used as boundary conditions in the continuum simulation.
5

Preparation of modified DNA molecules for multi-Spectroscopy Application

zhang, xinyu 29 November 2018 (has links)
Hot Electron Nanoscopy and Spectroscopy (HENs) is a current-sensing AFM technique recently developed in our lab, which have proven a new kind of response on conduction at the nanometer scale, casting a new light for the comprehension of electronic states in nanomaterials. Direct imaging of DNA structure has long been investigated, with the development of HENs technology, more structural information about DNA could be revealed by simultaneous measurements of height, phase, Raman signal, and conductivity. With the aim of applying it for the first time on biological molecules, customized double-stranded DNA sequences, including thiol-modified oligonucleotides are designed to create preferential conductive paths through the basis as a benchmark system for the technique on biomolecules. This work aims to a final goal to characterize hot-electron current between gold tip and thiol modified DNA which ideally is covalently bonded to the gold surface and optimized for the application. In this work, high density of DNA absorbed by SERS active gold surface with atomic flat islands has been prepared for HENs application. The samples have been characterized by AFM, SKPM and Raman Spectroscopy, as non-destructive and controlled interactive image analysis. High-resolution images of DNA have been acquired, S-S and Au-S bonding of DNA anchored on SERS active gold substrate are also visible with Surface-enhanced Raman and Tip-enhanced Raman signals. A submolecular feature has also been found in both topographical and electrical results. Herein, we report the synthesis and characterization steps to obtain the optimized operation standard.
6

SILVER HALIDE NANOCUBES: UNIQUE PLATFORM FOR DEVELOPING HIGH-PERFORMANCE CATALYSTS

Abeyweera, Sasitha Chathuranga January 2020 (has links)
Controlled synthesis of functional nanostructures is of paramount interest due to their novel properties and efficient functionalities. The size and morphology of each particle in the nanoscale contribute to their optical and electronic properties. Also, the collective arrangement of these nanostructures in 3D space maximizes active sites available for the cost-effective catalysis. Recent advances in the field show a vast range of nanostructures with unique designs that affect their catalytic properties. In this dissertation, utilizing silver halides as a unique platform to develop high-performance catalysts were discussed with their respective synthesis strategies, structural evolution, and structure-related properties. Initially, we synthesized well-defined silver chlorobromide (AgCl0.5Br0.5) nanostructures investigating the effects of various reaction parameters on the synthesis. Simple reaction parameters were overlooked to gain additional controllability on determining the morphology of the nanocrystals regardless of the composition. Thus, the influence of the size and exposed surface facets was investigated towards photocatalytic activity performing methylene blue degradation on AgCl0.5Br0.5 with different sizes and morphologies, under visible light. Then, the ability to use these AgCl0.5Br0.5 nanocubes were investigated as a reactive and sacrificial template for the synthesis of nanoplates and nanoshells. As an example, fast precipitation reaction between Ag+ and benzenethiol (BT–) results in an uncontrollable growth leading to aggregated structures. The low solubility and the planer surfaces of the silver halide cubes were utilized to reduce the reaction rate and promote the growth of layered AgBT as plates, which can be organized into hollow nanostructures. Time-dependent microscopic and spectroscopic measurements showed the structural evolution and associated kinetics of the conversions. Developing a comprehensive understanding enabled generalizing the procedure to synthesize other silver-based hollow nanostructures. Mechanistic studies showed two different hollowing mechanisms involving, that depends on the anion being exchanged. The degree of nucleation and the crystal structure of silver-sulfur compounds determined the relative diffusion of ions leading to their overall size and morphology. The hollow morphology was shown to have higher stability with a large surface area relative to its aggregated solid counterpart. Next, highly porous Ag nanostructures were synthesized electrochemically, using silver thiolate nanocages. High porosity and their arrangement as plates enhanced available active sites and mass transport for CO2 electroreduction. Furthermore, the strategy was extended to design bimetallic nanostructures with enhanced bimetallic boundaries where selectivity of ethanol formation from CO2 electroreduction can be increased. Overall, the study explores the novel approaches to utilize chemical and physical properties of silver halides for various material designs that determines their enhanced performance. / Chemistry
7

Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications

Huang, Shan 01 November 2011 (has links)
Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high mobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, the atomistic and continuum modeling are performed to study the chemical-mechanical failures. The objective is to understand the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion-induced fracture in alloy electrodes for lithium-ion batteries. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures are discussed. Silicon is one of the most promising anode materials for Li-ion batteries (LIB) because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. To improve mechanical stability of LIB anode, failure mechanisms of silicon and coated tin-oxide nanowires have been studied at continuum level. It's shown that anisotropic diffusivity and anisotropic deformation play vital roles in lithiation process. Our predictions of fracture initiation and evolution are verified by in situ experiment observations. Due to the mechanical confinement of the coating layers, our study demonstrates that it is possible to simultaneously control the electrochemical reaction rate and the mechanical strain of the electrode materials through carbon or aluminum coating, which opens new avenues of designing better lithium ion batteries. This thesis addresses the nano-chemo-mechanical failure problems in two green energy-carrier systems toward improving the performance of Li-ion battery anode and hydrogen storage system. It provides an atomistic and continuum modeling framework for the study of chemo-mechanics of advanced materials such as nano-structured metals and alloys. The results help understand the chemical effects of impurities on the mechanical properties of host materials with different metallic and covalent bonding characteristics.
8

Engineering Plasmonic Interactions in Three Dimensional Nanostructured Systems

Singh, Haobijam Johnson January 2016 (has links)
Strong light matter interactions in metallic nanoparticles (NPs), especially those made of noble metals such as Gold and Silver is at the heart of much ongoing research in nanoplasmonics. Individual NPs can support collective excitations (Plasmon’s) of the electron plasma at certain wavelengths, known as the localized surface Plasmon resonance (LSPR) which provides a powerful platform for various sensing, imaging and therapeutic applications. For a collection of NPs their optical properties can be signify cannily different from isolated particles, an effect which originates in the electromagnetic interactions between the localised Plasmon modes. An interesting aspect of such interactions is their strong dependence on the geometry of NP collection and accordingly new optical properties can arise. While this problem has been well considered in one and two dimensions with periodic as well as with random arrays of NPs, three dimensional systems are yet to be fully explored. In particular, there are challenges in the successful de-sign and fabrication of three dimensional (3D) plasmonic metamaterials at optical frequencies. In the work presented in this thesis we present a detail investigation of the theoretical and experimental aspects of plasmonic interactions in two geometrically different three dimensional plasmonic nanostructured systems - a chiral system consisting of achiral plasmonic nanoparticles arranged in a helical geometry and an achiral system consisting of achiral plasmonic nanoparticle arrays stacked vertically into three dimensional geometry. The helical arrangement of achiral plasmonic nanoparticles were realised using a wafer scale technique known as Glancing Angle Deposition (GLAD). The measured chiro-optical response which arises solely from the interactions of the individual achiral plasmonic NPs was found to be one of the largest reported value in the visible. Semi analytical calculation based on couple dipole approximation was able to model the experimental chiro-optical response including all the variabilities present in the experimental system. Various strategies based on antiparticle spacing, oriented elliptical nanoparticles, dielectric constant value of the dielectric template were explored such as to engineer a strong and tunable chiro-optical response. A key point of the experimental system despite the presence of variabilities, was that the measured chiro-optical response showed less than 10 % variability along the sample surface. Additionally we could exploit the strong near held interactions of the plasmonic nanoparticles to achieve a strongly nonlinear circular differential response of two photon photoluminescent from the helically arranged nanoparticles. In addition to these plasmonic chiral systems, our study also includes investigation of light matter interactions in purely dielectric chiral systems of solid and core shell helical geometry. The chiro-optical response was found to be similar for both the systems and depend strongly on their helical geometry. A core-shell helical geometry provides an easy route for tuning the chiro-optical response over the entire visible and near IR range by simply changing the shell thickness as well as shell material. The measured response of the samples was found to be very large and very uniform over the sample surface. Since the material system is based entirely on dielectrics, losses are minimal and hence could possibly serve as an alternative to conventional plasmonic chiro-optical materials. Finally we demonstrated the used of an achiral three dimensional plasmonic nanostructure as a SERS (surface enhance Raman spectroscopy) substrate. The structure consisted of porous 3D metallic NP arrays that are held in place by dielectric rods. For practically important applications, the enhancement factor, as well as the spatial density of the metallic NPs within the laser illumination volume, arranged in a porous 3D array needs to be large, such that any molecule in the vicinity of the metal NP gives rise to an enhanced Raman signal. Having a large number of metallic NPs within the laser illumination volume, increases the probability of a target molecule to come in the vicinity of the metal NPs. This has been achieved in the structures reported here, where high enhancement factor (EF) in conjunction with large surface area available in a three dimensional structure, makes the 3D NP arrays attractive candidates as SERS substrates.

Page generated in 0.0499 seconds