• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 401
  • 259
  • 141
  • 73
  • 16
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1098
  • 310
  • 235
  • 190
  • 140
  • 134
  • 122
  • 122
  • 120
  • 108
  • 105
  • 99
  • 99
  • 83
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Production Of Boron Nitride Nanotubes And Their Uses In Polymer Composites

Demir, Can 01 October 2010 (has links) (PDF)
Boron nitride nanotubes (BNNTs), firstly synthesized in 1995, are structural analogues of carbon nanotubes (CNTs) with alternating boron and nitrogen atoms instead of carbon atoms. Besides their structure, mechanical and thermal properties of BNNTs are very similar to the remarkable properties of CNTs. However, BNNTs have higher resistance to oxidation than CNTs. Also, BNNTs are electrically isolating. Therefore, they are envisioned as suitable fillers for the fabrication of mechanically and thermally enhanced polymeric composites, while preserving the electrical isolation of the polymer matrix. In this study, polypropylene (PP) &ndash / boron nitride nanotube (BNNT) composites were prepared using a twin-screw extruder. Mechanical and thermal properties of PP&ndash / BNNT composites were investigated as a function of nanotube loading. The nanotubes used in the composites were synthesized from the reaction of ammonia gas with a powder mixture of elemental boron and iron oxide. X-ray diffraction (XRD) analysis revealed the predominant hexagonal boron nitride in the synthesized product. Multi-wall nanotubes with outer diameters ranging from 40 to 130 nm were observed with SEM and TEM analyses. Tensile testing of PP&ndash / BNNT composites revealed slight increases in the Young&rsquo / s modulus and yield strength of neat PP with 0.5 and 1 wt% of the as-synthesized BNNT additions. On the other hand, due to the agglomeration of BNNTs, elongation at break and tensile strength values of composites decreased with increasing nanotube content. In the case of using 0.5 wt% loading of purified and then surface modified BNNTs, slight improvement in all mechanical properties of neat PP was achieved. Differential scanning calorimetry (DSC) analysis revealed a noticeable increase in the crystallization temperature of BNNT&ndash / added composites. Coefficient of linear thermal expansion (CLTE) of polymeric composites were studied and no significant change in the CLTE of neat PP was observed with the addition of BNNTs. Results of thermal gravimetric analysis (TGA) indicated improvements in the thermal stability of neat PP with BNNT additions.
512

Production And Characterization Of Boron Containing Flame Retardant Polyamide-6 And Polypropylene Composites And Fibers

Dogan, Mehmet 01 May 2011 (has links) (PDF)
The main objective of this study was to produce flame retardant polyamide-6 (PA-6) and polypropylene (PP) composites and fibers containing boron compounds. The synergistic effect on flame retardancy of boron compounds (boron silicon containing oligomer (BSi), zinc borate (ZnB), boron phosphate (BPO4), metal oxide doped BPO4 and lanthanum borate (LaB)) with conventional flame retardants were investigated. The synergistic effect of nano-clay with commercial flame retardants was also investigated in order to reduce the total amount of flame retardant that is essential for fiber applications. The UL-94, limiting oxygen index (LOI), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), fourrier transform infrared spectroscopy (FTIR) and cone calorimeter tests were conducted on composite materials in order to investigate the effect of synergy agents on the flame retardant and thermal properties of conventional flame retardant containing PA-6 and PP composites. According to the results from composite materials, boron compounds and clay showed synergistic effect with phosphorus based commercial flame retardants by acting generally with a condensed phase mechanism by increasing the char formation and/or by increasing the barrier effect of the final char residue. Inspired from the previous studies, firstly, only nano-sized BPO4 containing flame retardant fibers were produced and characterized. In the view of the results obtained from the composite trials, the boron compounds and organo clay were used with phosphorus based flame retardants to produce flame retardant fibers. The characterization of fiber samples were made with mechanical testing, melt flow index measurements (MFI), TGA, DSC, SEM and Micro Combustion Calorimeter (MCC) tests. According to the results from fiber samples, the inclusion of BPO4 reduced the peak heat release rate of the pure PA-6 and PP fiber. The reduction for PA-6 is higher than the PP fiber due to char forming character of PA-6. The usage of boron compounds and clay with phosphorus based flame retardants caused further reduction of peak heat release rate (PHRR) and total heat release values and increased the char formation. The amount of reduction of PHRR and total heat release (THR) is not so much due to the thermally thin character of fiber samples of nearly 40 microns. It is evident that a fabric made with these fibers will show better flame retardant behavior than single fiber tests due to its thick character with respect to the fiber samples.
513

Nanocomposites Based On Blends Of Polystyrene

Dike, Ali Sinan 01 June 2011 (has links) (PDF)
Due to brittleness of polystyrene, PS, its usage area is restricted. To solve this problem and expand the usage area of PS, it can be blended and impact modified with an elastomeric material. In this study, the decrease in the modulus and tensile strength imparted by impact modification was overcome by reinforcing this mixture by incorporating organoclays and producing nanocomposites. This study consists of two parts. In the first part of this study three different types of aliphatic elastomeric materials and three different types of organoclays were used and their effects on the morphology, mechanical, thermal, and rheological properties of PS were investigated. Lotader AX8900, Lotader AX8840 and Lotader 2210 were chosen as the aliphatic elastomeric compatibilizers / and Cloisite
514

Production Of Epoxide Functionalized Boehmite Nanoparticles And Their Use In Epoxide Nanocomposites

Coniku, Anisa 01 January 2011 (has links) (PDF)
In the present study the effects of addition of organically functionalized boehmite nano-particles on the mechanical properties of epoxy polymers were analyzed. Nanosize platelets of boehmite powders were produced via a hydrothermal process from the raw material aluminum trihydroxide Al(OH)3 provided by a a chemical supplier, but which in future studies can be replaced by local resources of aluminum trihydroxide available in Seydisehir, Turkey. The ground aluminum trihydroxide particles were submitted to a two-step preliminary ageing procedure in different pH media. Particles were then converted to boehmite nanoparticles via hydrothermal ageing at high pressure and temperature. The product&lsquo / s chemical identity, size, structure and morphology were characterized with XRD, FT-IR, SEM and PSA analyses. By controlling the pH and the ageing time as parameters, hexagonal shaped nanoplatelets were obtained with dimensions ranging from 100 to 500 nm. Aiming at using these nanoparticles into surface coating polymers, the most favorable shape is the plate-like morphology, leading to adopting the last hydrothermal condition in the rest of the study. v The boehmite crystal surfaces are furnished with hydroxyls which can potentially be reacted with epoxy monomers of bisphenol A diglycidyl ether with the help of tin (II) chloride as catalyst through ring-opening reactions. The FT-IR and quantitative analyses indicated that this surface functionalization is possible under a temperature 80 oC and a weight ratio of 5:1 epoxy monomer to boehmite powder These novel inorganic/organic hybrid materials were then mixed with epoxy/hardener resin mixture to obtain nanocomposites. The properties of the composites were characterized accordingly with tensile, impact, micro hardness, micro-scratch tests, DMA analysis and observed with SEM analysis. A deterioration of the tensile strength from the neat polymer was observed, with a distinct trend between the functionalized and non-functionalized boehmite-epoxy polymers. The functionalized polymers showed a less deteriorative character. The tensile modulus instead showed a little improvement of (4%) in 5wt% loaded polymers. DMA analysis results revealed an improved glass transition temperature in the nanocomposites as well as in storage and loss modulus. As aimed in this work, the functionalized boehmite-epoxy polymers displayed a clear improvement in comparison to both non-functionalized and neat polymers in surface coating properties in hardness and scratch resistance.
515

Additives For Photodegradable Polyethylene

Oluz, Zehra 01 July 2012 (has links) (PDF)
Polyethylene (PE) is one of the most popular polymers used in daily life. However, saturated hydrocarbons cannot absorb the energy of light reaching to earth, so degradation process is rather slow which in return cause disposal problems. On the other hand, it was observed that in presence of oxygen and impurities in the polymer matrix, degradation can be rendered to shorter time intervals. This study covers investigation of effect of three different additives in UV induced oxidative degradation of polyethylene. In this work vanadium (III) acetylacetonate, serpentine and Cloisite 30B were used as additives both together and alone to follow photodegradation of polyethylene. Amount of vanadium (III) acetylacetonate was kept constant at 0.2 wt%, while serpentine and Cloisite 30B were used between 1 and 4 wt%. All compositions were prepared by using Brabender Torque Rheometer, and shaped as thin films by compression molding. Samples were irradiated by UV light up to 500 hours. Mechanical and spectroscopic measurements were carried out in certain time intervals to monitor the degradation. It can be concluded that all combinations of three additives showed the fastest degradation behavior compared to pure PE. In the absence of vanadium (III) acetylacetonate the degradation was slowed and fluctuations were observed in the residual percentage strain at break values. There was not a significant change in tensile strength of all samples. Carbonyl index values followed by FTIR were always in increasing manner. Thermal properties were also investigated by DSC Thermograms and they did not change significantly.
516

Surface modification of nanoparticles for polymer/ceramic nanocomposites and their applications

Kim, Philseok 17 November 2008 (has links)
Polymer/ceramic nanocomposites benefit by combining high permittivities (r) of metal oxide nanoparticles with high dielectric strength and excellent solution-processability of polymeric hosts. Simple mixing of nanoparticles and polymer generally results in poor quality materials due mainly to the agglomeration of nanoparticles and poor miscibility of nanoparticles in host materials. Surface modification of metal oxide nanoparticles with phosphonic acid-based ligands was found to afford a robust surface modification and improve the processablity and the quality of nanocomposites. The use of phosphonic-acid modified barium titanate (BaTiO₃) nanoparticles in dielectric nanocomposites dramatically improved the stability of the nanoparticle dispersion and the quality of the nanocomposites. Surface modification of BaTiO₃ nanoparticles allowed high quality nanocomposite thin films in ferroelectric polymer hosts such as poly(vinylidene fluoride-co-hexafluoropropylene) with large volume fractions (up to 50 vol. %), which exhibited a remarkable combination of a high permittvity (35 at 1 kHz) and a high breakdown strength (210 V/µm) leading to a maximum energy storage density of 6.1 J/cm³. The effect of nanoparticle volume fractions on the dielectric properties of this nanocomposite system was investigated and compared with theoretical models. At high volume fraction of nanoparticles, the porosity of the nanocomposites was found to have important role in the dielectric performance. A combined effective medium theory and finite difference simulation was used to model the dielectric properties of high volume fraction dielectric nanocomposites with porosity. These results provide a guideline to optimize the volume fractions of nanoparticles for maximum energy density. Nanocomposites based on phosphonic acid-modified BaTiO₃ nanoparticles can also be used as printable high permittivity dielectrics in organic electronics. High volume fractions (up to 37 vol. %) of phosphonic acid-modified BaTiO₃ nanoparticles dispersed in cross-linked poly(4-vinylphenol) allowed solution-processable high permittivity thin films with a large capacitance density (~50 nF/cm²) and a low leakage current (10 8 A/cm²) suitable as a gate insulator in organic field-effect transistors (OFETs). Pentacene-based OFETs using these nanocomposites showed a low threshold voltage (< -2.0 V) and a large on/off current ratio (Ion/off 104 ~ 106) due to the high capacitance density and low leakage current of the gate insulator.
517

The influence of surface curvature on polymer behavior at inorganic surfaces

Nunnery, Grady A. 05 April 2010 (has links)
Nanoscale surfaces were examined in order to determine the influence of surface curvature on polymer behavior at polymer-ceramic interfaces, as well as the influence of nanoparticles in cellulosic media. Poly(methyl methacrylate) and block copolymers thereof were adsorbed onto porous alumina substrates of various pore sizes in order to determine how polymer and copolymer adsorption behavior at nanoscale surfaces differs from adsorption onto flat surfaces. It was determined that chain density on concave surfaces dramatically decreases as curvature increases in much the same way that it does on convex surfaces (e.g. on the surface of nanoparticles), and physical models are provided to explain this similarity. Diblock copolymer adsorption is observed to vary dramatically with solvent quality and block asymmetry and can be correlated with the surface curvature very similarly to the adsorptive behavior of homopolymers on those same surfaces. The addition of nanoparticles to cellulosic media was investigated as a means to significantly modify the properties of cellulosic composites with minimal additions of nanoparticles. Although cellulose is among the most abundant polymers on earth, its primary uses are limited to bulk commodity goods, such as paper and textiles. This work demonstrates a simple means to control cellulosic fluid viscosity, thereby increasing the versatility of these biopolymers in additional applications with higher value-added potential. The formation of iron-cellulosic nanocomposites by the in-situ thermolysis of metal carbonyls to form metallic nanoparticles was performed and was analyzed by viscometry among other techniques. It was determined that the nanocomposites that were formed exhibited significantly increased viscosity, up to the point of gelation. Additionally, an introduction to the expansive field of nanocomposites is provided, including how and why composite properties change abruptly as filler size approaches the nanoscale. An extensive background on this diverse field as it relates to the current work is provided with an emphasis on cellulosic nanocomposites and the dependence of curvature on polymer-surface interactions. A detailed account of the experimental work relevant to this work is provided, including materials and characterization methods. Future work is proposed for both cellulosic nanocomposites as well as for curvature-dependent polymer adsorption. Finally, conclusions are drawn from the entire work and its implications to the greater field of nanocomposites.
518

Deformation studies of polymers and polymer/clay nanocomposites

Gurun, Bilge 08 November 2010 (has links)
Polymer clay nanocomposites have been a popular area of materials research since they were first introduced in the 1990s. The inclusion of clays into many different host polymers has been shown to improve the properties of matrix polymers in a number of ways including increased mechanical strength, thermal stability and improved barrier properties while keeping the composite light weight and transparent. Although there is a great deal of published work on the preparation and property measurements of polymer clay nanocomposites, there is no model to design a nanocomposite with a given set of properties for a specific end-use. While it is important to know the structure property relationships of materials, the understanding of how nanocomposites reach their final forms and properties is equally important. A thorough understanding of processing effects on the final structure of polymer clay nanocomposites is still missing. With this perspective, this thesis addresses building structure-processing relationships of polymer clay nanocomposites by analyzing multiaxial deformation behavior using in-situ x-ray scattering techniques. This thesis can be divided into two distinct parts. The first part concerns the design of the in-situ multiaxial deformation device (IMDD) used to create the deformation conditions that polymers go through during processing such as blow molding and thermoforming. The device was designed to overcome several concerns with in situ measurement by maintaining constant sample to detector distance, minimizing the material between the incident beam and the detectors, as well as exposing the same point on the sample throughout deformation. A new design to create biaxial deformation, termed in-situ biaxial deformation device (IBDD), is also introduced in this part of the thesis.. In addition, a new heating unit, attached to IBDD, is designed for higher temperature studies, up to 150°C, to imitate industrial processing conditions more closely. The second part of the thesis addresses the effect of strain, strain rate, and temperature as well as the amount of clay on the polymer morphology evolution during multiaxial deformation.. Two different polymer/clay systems were studied: poly(ethylene)/clay and poly(propylene)/clay. It was observed that the morphological evolution of polyethylene and polypropylene is affected by the existence of clay platelets as well as the deformation temperature and the strain rate. Martensitic transformation of orthorhombic polyethylene crystals into monoclinic crystal form was observed under strain but is hindered in the presence of clay nanoplatelets. The morphology evolution of poly(propylene) crystal structure during multiaxial deformation was more subtle where the most stable α-crystalline form went through strain induced melting. This was more noticeable in the nanocomposites with clays up to 5 wt%. It was also noted that the thickness of the interlamellar amorphous region increased with increasing strain at room temperature due to the elongation of the amorphous chains. The increase in the amorphous layer thickness is slightly higher for the poly(ethylene)/clay nanocomposites compared to neat poly(ethylene) while the increase in the lamellar long spacing is slightly higher for the neat poly(propylene) compared to poly(propylene)/clay nanocomposites. The rate of change in the characteristic repeat distance in both poly(ethylene) and poly(propylene) systems is higher at faster strain rates, at room temperature, where it remained constant during higher temperature deformations. Time dependent recovery after deformation studies have shown that poly(ethylene)/clay system reverts back to its initial configuration. The recovery in the amorphous chains was however observed to take longer in the clay added poly(ethylene)s. Crystalline relaxation was observed to happen almost instantly in the poly(ethylene)/clay system. On the other hand, amorphous chains in the poly(propylene)/clay system did not revert back to the initial configuration in the period of time that the recovery observations were performed while the crystalline configuration recovered back almost fully in the given time.
519

Cellulosic nanocomposites with unique morphology and properties

Lee, Jihoon 12 November 2010 (has links)
Cellulose nanowhiskers reinforced poly(vinyl alcohol)(PVA) nanofiber web is successfully fabricated using electrospinning technique and the mechanical properties of the single electrospun fiber are measured using nanoindentation method. The morphology and mechanical properties of highly aligned electrospun fiber webs are investigated. It is found that the modulus and tensile strength of aligned webs are higher than those of isotropic electrospun fiber webs. Experimental results are compared with a longitudinal Halpin-Tsai model. Ice-templated(IT) cellulose microfibril porous foams are successfully fabricated via unidirectional freezing methods. The morphology and growth mechanism of IT surfaces are investigated successfully using cellulose microfibrils and hydrophillic substrates. By controlling the temperature gradient between cellulose microfibril suspensions and secondary freezing mediums, various surface structures including honey-comb like structures, ellipse-shape channel strcutures, fully developed multichannel structures are obtained. For the honey-comb like patterned surface, high contact angles are observed. On the other hand, for the layered patterned surface, anisotropic wetting properties are observed.
520

Polycarbonate-silsesquioxane and polycarbonate-siloxane nanocomposites: synthesis, characterization, and application in the fabrication of porous inorganic films

Abdallah, Jassem 21 August 2009 (has links)
Three types of poly(norbornane carbonate) or PNC oligomers were synthesized and characterized via spectroscopic methods and elemental analyses to validate their chemical structures. Using the results from proton nuclear magnetic resonance (1H NMR) experiments, the degree of polymerization and size of each PNC chain was estimated via end-group analysis. All three types of PNC structures were both thermally-labile and acidolytically-labile, allowing them to be used as sacrificial materials in both direct-write and thermally-processed template systems. Thermogravimetric analysis (TGA) data was used to determine the kinetic parameters for the thermolytic decomposition reactions and evolved-gas analysis via mass spectrometry (TGA-MS) was used to determine the mechanisms for thermolytic degradation. PNC oligomers were freely-mixed with hydrogen silsesquioxane (HSQ) to form solutions that were spin-coated to form templated films. Transmission electron microscopy (TEM) showed that the free-mixing of PNCs with HSQ resulted in the agglomeration of the porogen molecules during the spincoating step. This phase-segregation produced domain sizes much larger than those of the individual chains, and during decomposition large pores were produced. To combat the phase segregation, hydrosilylation reactions were used to covalently bond vinyl end-capped PNC chains to silane-functionalized siloxane and silsesquioxane molecules. These matrix-like materials served as compatibilizers in order to improve the phase-compatibility of the sacrificial polymers in HSQ films. NMR and GPC analyses showed that the solids recovered from the hydrosilylation reactions were binary mixtures of hybrid nanocomposite molecules and residual ungrafted PNC chains. TEM imaging showed that the domains in these nanocomposite films had bimodal size distributions due to the presence of two components in the mixtures. The hybrid molecules produced pores ranging in size from about 6-13 nm as a result of improvements in the phase-compatibility of the grafted oligomers. However, the residual ungrafted oligomers in the blends produced larger domains measuring 30-40 nm. It is believed that separation difficulties can be avoided if the vinyl termination reaction conditions can be adjusted to ensure 100% conversion of all the terminal hydroxyl groups to vinyl groups. Doing so would allow all PNC chains to be grafted during hydrosilylation reaction; thus, avoiding the recovery of free PNC oligomers.

Page generated in 0.0401 seconds