Spelling suggestions: "subject:"nanofibers."" "subject:"nanaofibers.""
91 |
Precision nanofibers for biomedical applications via living crystallization-driven self-assemblyGarcia Hernandez, Juan Diego 25 April 2022 (has links)
Nature provides fascinating examples of functional materials with hierarchical structures. Nano and microscale materials have been prepared by synthetic approaches via the self-assembly of discrete building blocks with the aim to mimic nature’s materials in complexity and size. The solution-state self-assembly of block copolymers (BCPs) with crystallizable core-forming blocks has enabled access to low curvature morphologies such as 1D and 2D micelles via a spontaneous nucleation method termed crystallization-driven self-assembly (CDSA). Via a seeded growth method known as living CDSA, 1D and 2D micelles of controlled dimensions and low dispersity can easily be prepared. However, due to the challenges associated with the synthesis of high aspect ratio nanoparticles and the low number of noncytotoxic polymers known to undergo CDSA, their use for biomedical applications has been limited. The aim of the work described in this thesis is to develop nanofibers of precise dimensions, with nontoxic materials, for potential biomedical applications such as drug delivery, tissue engineering and materials reinforcement.
Chapter 1 describes how nature makes superb functional hierarchical materials that serve as inspiration for the development of synthetic methods for the preparation of nano and microstructures. The principles regarding the solution-state self-assembly of BCPs with amorphous or crystalline core-forming blocks are discussed. The preparation of length-controlled nanostructures, segmented micelles, and supermicelles via living CDSA and micelle self-assembly are presented. An introduction to nanoparticle drug delivery, materials reinforcement, and tissue engineering with emphasis on the development and advantages of high aspect ratio nanofibers is given. Finally, a brief perspective on the development of nanofiber-based therapeutics is provided.
Chapter 2 discusses the preparation of coaxial-core core nanofibers from the self-assembly of triBCPs. The nanofiber structure is comprised of a crystalline inner core, an amorphous hydrophobic outer core, and a water-soluble corona-forming block. Encapsulation of a model hydrophobic molecule was achieved by the outer amorphous core. This represents the first example of water-soluble, length-controlled, and low length-dispersity (Ð) nanofibers loaded via non-covalent interactions. In Chapter 2, preliminary studies suggested cargo uptake by diBCP nanofibers may be possible.
Chapter 3 focusses on investigating the non-covalent loading of length controlled diBCP nanofibers with a hydrophobic cargo. The effect of the chemical identity and the length of the corona-forming blocks was also studied.
Chapter 4 describes the self-assembly of B-A-B triBCPs with crystallizable hydrophobic ‘B’ terminal segments to yield fiber-like micelle networks and their potential applications. Conditions for the preparation of discrete crystalline core flower-like micelles and intermicellar fiber-like networks of crystalline core nanofibers were investigated. For the first time, crystalline core nanofiber networks are reported.
Chapter 5 focuses on the proof-of-concept development of water-soluble length-controlled nanofibers with corona-forming blocks capable of targeting specific cancer tissue. Additionally, segmented nanofibers for drug delivery applications were prepared. Finally, the association of curcumin with the nanofiber corona-forming block was briefly investigated.
Chapter 6 summarizes the work presented in this thesis which contributes towards the development of length-tunable nanofibers for biomedical applications and outlines future research directions of the work presented. / Graduate / 2023-04-20
|
92 |
Materials design and processing development of electrospun nanofibers for energy conversion systems / エネルギー変換システムへの応用を指向した電界紡糸ナノファイバーの材料設計とプロセスの開発Navaporn, Kaerkitcha 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21190号 / エネ博第364号 / 新制||エネ||71(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 佐川 尚, 教授 森井 孝, 教授 松田 一成 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
|
93 |
Evaluating and Predicting Occupational Exposures to Carbon Nanotubes and NanofibersDahm, Matthew 07 June 2019 (has links)
No description available.
|
94 |
Superabsorbent Nanofiber MatricesFrazier, Laura M. January 2006 (has links)
No description available.
|
95 |
Characterization of Poly(Methyl Methacrylate) and Thermoplastic Polyurethane-Carbon Nanofiber Composites Produced by Chaotic MixingJimenez, Guillermo Alfonso 02 October 2007 (has links)
No description available.
|
96 |
Submicron Structures, Electrospinning and FiltersBhargava, Sphurti 02 October 2007 (has links)
No description available.
|
97 |
Electrospinning and NanofibersHan, Tao January 2007 (has links)
No description available.
|
98 |
Manufacturing of High Performance Polymer Nanocomposites Containing Carbon Nanotubes And Carbon Nanofibers Using Ultrasound Assisted Extrusion ProcessKumar, Rishi 07 December 2010 (has links)
No description available.
|
99 |
Evaluation of Chromatographic Systems using Green Chemistry Metrics and Development of Molecular Imprinted SorbentsFitch, Brian N. January 2021 (has links)
No description available.
|
100 |
Bacterial Spore-based Humidity Responsive TextilesUngar, Yocheved January 2023 (has links)
Humidity responsive materials sense, respond and adapt to the environment in response to changes in humidity. An important potential application of this material technology is the creation of “smart textiles” that facilitate moisture management in clothing. Materials used for clothing must have characteristics such as elasticity, washability and abrasion resistance, but smart textiles that have been demonstrated to date lack these characteristics. It is the need for improved materials that motivated the present study.
Here, we developed spore-cellulose nanofiber composites (CNF) and spore-polyurethane (PU) composites, which are two biologically-based humidity-responsive materials that derive their high energy density humidity responsiveness from spores. We demonstrate the use of these hygromorphing materials for smart textiles by coupling the responsive materials to fabrics to create a textile that vents in humid environments and closes in dry environments. This material can be used in clothing to enable fast evaporation of sweat from the skin and improved comfort.
Because the spore-CNF composite is not elastic stretchy or water resistant and therefore is undesirable for real world clothing applications, we also developed a stretchy spore-PU composite that is simultaneously humidity responsive, stretchy and water and abrasion resistant. In addition, we fabricated spore-PU based hygromorphing fabric bilayer actuators to create venting smart textiles with adaptive permeability properties that are compatible with clothing applications. These smart fabrics have the potential to improve the functionality and utility of garments, especially those intended for athleticwear, workwear and protective garments.
|
Page generated in 0.0339 seconds